Effect of stress state on deformation and fracture of nanocrystalline copper: Molecular dynamics simulation
Deformation in a microcomponent is often constrained by surrounding joined material making the component under mixed loading and multiple stress states. In this study, molecular dynamics (MD) simulation are conducted to probe the effect of stress states on the deformation and fracture of nanocrystal...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2014-09, Vol.23 (9), p.488-495 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 495 |
---|---|
container_issue | 9 |
container_start_page | 488 |
container_title | Chinese physics B |
container_volume | 23 |
creator | 张亮 吕程 Kiet Tieu 裴林清 赵星 |
description | Deformation in a microcomponent is often constrained by surrounding joined material making the component under mixed loading and multiple stress states. In this study, molecular dynamics (MD) simulation are conducted to probe the effect of stress states on the deformation and fracture of nanocrystalline Cu. Tensile strain is applied on a Cu single crystal, bicrystal and polycrystal respectively, under two different tension boundary conditions. Simulations are first conducted on the bicrystal and polycrystal models without lattice imperfection. The results reveal that, compared with the performance of simulation models under free boundary condition, the transverse stress caused by the constrained boundary condition leads to a much higher tensile stress and can severely limit the plastic deformation, which in return promotes cleavage fracture in the model. Simulations are then performed on Cu single crystal and polycrystal with an initial crack. Under constrained boundary condition, the crack tip propagates rapidly in the single crystal in a cleavage manner while the crack becomes blunting and extends along the grain boundaries in the polycrystal. Under free boundary condition, massive dislocation activities dominate the deformation mechanisms and the crack plays a little role in both single crystals and polycrystals. |
doi_str_mv | 10.1088/1674-1056/23/9/098102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753543554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662184609</cqvip_id><sourcerecordid>1753543554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-161e4ed195f5851882d85ed8b510fcffc94b1a85d8e9060c18169cb424795f2a3</originalsourceid><addsrcrecordid>eNo9kE1OwzAQRi0EEqVwBCSLFZsQO45dZ4mq8iMVsYG15TrjEpTYqZ0sehXOwp24Ao5adTGa0eh93-IhdEvJAyVS5lQsyowSLvKC5VVOKklJcYZmBeEyY5KV52h2Yi7RVYzfhIjEsBnqVtaCGbC3OA4BYkxLD4C9wzVYHzo9NOnWrsY2aDOMASbWaedN2Ce2bRsH2Pi-h_D3-4PffAtmbHXA9d7prjGpsenSY-q5RhdWtxFujnuOPp9WH8uXbP3-_Lp8XGeGCTJkVFAooaYVt1xyKmVRSw613HBKrLHWVOWGaslrCRURxFBJRWU2ZVEuUqTQbI7uD7198LsR4qC6JhpoW-3Aj1HRBWe8ZDzNHPEDaoKPMYBVfWg6HfaKEjXpVZM6NalTBVOVOuhNubtj7su77a5x21NQiILKUpCK_QOCEHwC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753543554</pqid></control><display><type>article</type><title>Effect of stress state on deformation and fracture of nanocrystalline copper: Molecular dynamics simulation</title><source>IOP Publishing Journals</source><creator>张亮 吕程 Kiet Tieu 裴林清 赵星</creator><creatorcontrib>张亮 吕程 Kiet Tieu 裴林清 赵星</creatorcontrib><description>Deformation in a microcomponent is often constrained by surrounding joined material making the component under mixed loading and multiple stress states. In this study, molecular dynamics (MD) simulation are conducted to probe the effect of stress states on the deformation and fracture of nanocrystalline Cu. Tensile strain is applied on a Cu single crystal, bicrystal and polycrystal respectively, under two different tension boundary conditions. Simulations are first conducted on the bicrystal and polycrystal models without lattice imperfection. The results reveal that, compared with the performance of simulation models under free boundary condition, the transverse stress caused by the constrained boundary condition leads to a much higher tensile stress and can severely limit the plastic deformation, which in return promotes cleavage fracture in the model. Simulations are then performed on Cu single crystal and polycrystal with an initial crack. Under constrained boundary condition, the crack tip propagates rapidly in the single crystal in a cleavage manner while the crack becomes blunting and extends along the grain boundaries in the polycrystal. Under free boundary condition, massive dislocation activities dominate the deformation mechanisms and the crack plays a little role in both single crystals and polycrystals.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>EISSN: 1741-4199</identifier><identifier>DOI: 10.1088/1674-1056/23/9/098102</identifier><language>eng</language><subject>BICRYSTALS ; Boundary conditions ; COMPUTER SIMULATION ; Constraints ; Copper ; CRYSTAL STRUCTURE ; DEFORMATION ; DISLOCATIONS ; Fracture mechanics ; Polycrystals ; Single crystals ; STRESS ; Stresses ; 仿真模型 ; 分子动力学模拟 ; 塑性变形 ; 应力状态 ; 断裂模型 ; 纳米晶铜 ; 自由边界条件 ; 骨折</subject><ispartof>Chinese physics B, 2014-09, Vol.23 (9), p.488-495</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-161e4ed195f5851882d85ed8b510fcffc94b1a85d8e9060c18169cb424795f2a3</citedby><cites>FETCH-LOGICAL-c360t-161e4ed195f5851882d85ed8b510fcffc94b1a85d8e9060c18169cb424795f2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>张亮 吕程 Kiet Tieu 裴林清 赵星</creatorcontrib><title>Effect of stress state on deformation and fracture of nanocrystalline copper: Molecular dynamics simulation</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>Deformation in a microcomponent is often constrained by surrounding joined material making the component under mixed loading and multiple stress states. In this study, molecular dynamics (MD) simulation are conducted to probe the effect of stress states on the deformation and fracture of nanocrystalline Cu. Tensile strain is applied on a Cu single crystal, bicrystal and polycrystal respectively, under two different tension boundary conditions. Simulations are first conducted on the bicrystal and polycrystal models without lattice imperfection. The results reveal that, compared with the performance of simulation models under free boundary condition, the transverse stress caused by the constrained boundary condition leads to a much higher tensile stress and can severely limit the plastic deformation, which in return promotes cleavage fracture in the model. Simulations are then performed on Cu single crystal and polycrystal with an initial crack. Under constrained boundary condition, the crack tip propagates rapidly in the single crystal in a cleavage manner while the crack becomes blunting and extends along the grain boundaries in the polycrystal. Under free boundary condition, massive dislocation activities dominate the deformation mechanisms and the crack plays a little role in both single crystals and polycrystals.</description><subject>BICRYSTALS</subject><subject>Boundary conditions</subject><subject>COMPUTER SIMULATION</subject><subject>Constraints</subject><subject>Copper</subject><subject>CRYSTAL STRUCTURE</subject><subject>DEFORMATION</subject><subject>DISLOCATIONS</subject><subject>Fracture mechanics</subject><subject>Polycrystals</subject><subject>Single crystals</subject><subject>STRESS</subject><subject>Stresses</subject><subject>仿真模型</subject><subject>分子动力学模拟</subject><subject>塑性变形</subject><subject>应力状态</subject><subject>断裂模型</subject><subject>纳米晶铜</subject><subject>自由边界条件</subject><subject>骨折</subject><issn>1674-1056</issn><issn>2058-3834</issn><issn>1741-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAQRi0EEqVwBCSLFZsQO45dZ4mq8iMVsYG15TrjEpTYqZ0sehXOwp24Ao5adTGa0eh93-IhdEvJAyVS5lQsyowSLvKC5VVOKklJcYZmBeEyY5KV52h2Yi7RVYzfhIjEsBnqVtaCGbC3OA4BYkxLD4C9wzVYHzo9NOnWrsY2aDOMASbWaedN2Ce2bRsH2Pi-h_D3-4PffAtmbHXA9d7prjGpsenSY-q5RhdWtxFujnuOPp9WH8uXbP3-_Lp8XGeGCTJkVFAooaYVt1xyKmVRSw613HBKrLHWVOWGaslrCRURxFBJRWU2ZVEuUqTQbI7uD7198LsR4qC6JhpoW-3Aj1HRBWe8ZDzNHPEDaoKPMYBVfWg6HfaKEjXpVZM6NalTBVOVOuhNubtj7su77a5x21NQiILKUpCK_QOCEHwC</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>张亮 吕程 Kiet Tieu 裴林清 赵星</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140901</creationdate><title>Effect of stress state on deformation and fracture of nanocrystalline copper: Molecular dynamics simulation</title><author>张亮 吕程 Kiet Tieu 裴林清 赵星</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-161e4ed195f5851882d85ed8b510fcffc94b1a85d8e9060c18169cb424795f2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>BICRYSTALS</topic><topic>Boundary conditions</topic><topic>COMPUTER SIMULATION</topic><topic>Constraints</topic><topic>Copper</topic><topic>CRYSTAL STRUCTURE</topic><topic>DEFORMATION</topic><topic>DISLOCATIONS</topic><topic>Fracture mechanics</topic><topic>Polycrystals</topic><topic>Single crystals</topic><topic>STRESS</topic><topic>Stresses</topic><topic>仿真模型</topic><topic>分子动力学模拟</topic><topic>塑性变形</topic><topic>应力状态</topic><topic>断裂模型</topic><topic>纳米晶铜</topic><topic>自由边界条件</topic><topic>骨折</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>张亮 吕程 Kiet Tieu 裴林清 赵星</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>张亮 吕程 Kiet Tieu 裴林清 赵星</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of stress state on deformation and fracture of nanocrystalline copper: Molecular dynamics simulation</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>23</volume><issue>9</issue><spage>488</spage><epage>495</epage><pages>488-495</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><eissn>1741-4199</eissn><abstract>Deformation in a microcomponent is often constrained by surrounding joined material making the component under mixed loading and multiple stress states. In this study, molecular dynamics (MD) simulation are conducted to probe the effect of stress states on the deformation and fracture of nanocrystalline Cu. Tensile strain is applied on a Cu single crystal, bicrystal and polycrystal respectively, under two different tension boundary conditions. Simulations are first conducted on the bicrystal and polycrystal models without lattice imperfection. The results reveal that, compared with the performance of simulation models under free boundary condition, the transverse stress caused by the constrained boundary condition leads to a much higher tensile stress and can severely limit the plastic deformation, which in return promotes cleavage fracture in the model. Simulations are then performed on Cu single crystal and polycrystal with an initial crack. Under constrained boundary condition, the crack tip propagates rapidly in the single crystal in a cleavage manner while the crack becomes blunting and extends along the grain boundaries in the polycrystal. Under free boundary condition, massive dislocation activities dominate the deformation mechanisms and the crack plays a little role in both single crystals and polycrystals.</abstract><doi>10.1088/1674-1056/23/9/098102</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | Chinese physics B, 2014-09, Vol.23 (9), p.488-495 |
issn | 1674-1056 2058-3834 1741-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753543554 |
source | IOP Publishing Journals |
subjects | BICRYSTALS Boundary conditions COMPUTER SIMULATION Constraints Copper CRYSTAL STRUCTURE DEFORMATION DISLOCATIONS Fracture mechanics Polycrystals Single crystals STRESS Stresses 仿真模型 分子动力学模拟 塑性变形 应力状态 断裂模型 纳米晶铜 自由边界条件 骨折 |
title | Effect of stress state on deformation and fracture of nanocrystalline copper: Molecular dynamics simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20stress%20state%20on%20deformation%20and%20fracture%20of%20nanocrystalline%20copper%EF%BC%9A%20Molecular%20dynamics%20simulation&rft.jtitle=Chinese%20physics%20B&rft.au=%E5%BC%A0%E4%BA%AE%20%E5%90%95%E7%A8%8B%20Kiet%20Tieu%20%E8%A3%B4%E6%9E%97%E6%B8%85%20%E8%B5%B5%E6%98%9F&rft.date=2014-09-01&rft.volume=23&rft.issue=9&rft.spage=488&rft.epage=495&rft.pages=488-495&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/23/9/098102&rft_dat=%3Cproquest_cross%3E1753543554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753543554&rft_id=info:pmid/&rft_cqvip_id=662184609&rfr_iscdi=true |