Effect of stress state on deformation and fracture of nanocrystalline copper: Molecular dynamics simulation

Deformation in a microcomponent is often constrained by surrounding joined material making the component under mixed loading and multiple stress states. In this study, molecular dynamics (MD) simulation are conducted to probe the effect of stress states on the deformation and fracture of nanocrystal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2014-09, Vol.23 (9), p.488-495
1. Verfasser: 张亮 吕程 Kiet Tieu 裴林清 赵星
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 495
container_issue 9
container_start_page 488
container_title Chinese physics B
container_volume 23
creator 张亮 吕程 Kiet Tieu 裴林清 赵星
description Deformation in a microcomponent is often constrained by surrounding joined material making the component under mixed loading and multiple stress states. In this study, molecular dynamics (MD) simulation are conducted to probe the effect of stress states on the deformation and fracture of nanocrystalline Cu. Tensile strain is applied on a Cu single crystal, bicrystal and polycrystal respectively, under two different tension boundary conditions. Simulations are first conducted on the bicrystal and polycrystal models without lattice imperfection. The results reveal that, compared with the performance of simulation models under free boundary condition, the transverse stress caused by the constrained boundary condition leads to a much higher tensile stress and can severely limit the plastic deformation, which in return promotes cleavage fracture in the model. Simulations are then performed on Cu single crystal and polycrystal with an initial crack. Under constrained boundary condition, the crack tip propagates rapidly in the single crystal in a cleavage manner while the crack becomes blunting and extends along the grain boundaries in the polycrystal. Under free boundary condition, massive dislocation activities dominate the deformation mechanisms and the crack plays a little role in both single crystals and polycrystals.
doi_str_mv 10.1088/1674-1056/23/9/098102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753543554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662184609</cqvip_id><sourcerecordid>1753543554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-161e4ed195f5851882d85ed8b510fcffc94b1a85d8e9060c18169cb424795f2a3</originalsourceid><addsrcrecordid>eNo9kE1OwzAQRi0EEqVwBCSLFZsQO45dZ4mq8iMVsYG15TrjEpTYqZ0sehXOwp24Ao5adTGa0eh93-IhdEvJAyVS5lQsyowSLvKC5VVOKklJcYZmBeEyY5KV52h2Yi7RVYzfhIjEsBnqVtaCGbC3OA4BYkxLD4C9wzVYHzo9NOnWrsY2aDOMASbWaedN2Ce2bRsH2Pi-h_D3-4PffAtmbHXA9d7prjGpsenSY-q5RhdWtxFujnuOPp9WH8uXbP3-_Lp8XGeGCTJkVFAooaYVt1xyKmVRSw613HBKrLHWVOWGaslrCRURxFBJRWU2ZVEuUqTQbI7uD7198LsR4qC6JhpoW-3Aj1HRBWe8ZDzNHPEDaoKPMYBVfWg6HfaKEjXpVZM6NalTBVOVOuhNubtj7su77a5x21NQiILKUpCK_QOCEHwC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753543554</pqid></control><display><type>article</type><title>Effect of stress state on deformation and fracture of nanocrystalline copper: Molecular dynamics simulation</title><source>IOP Publishing Journals</source><creator>张亮 吕程 Kiet Tieu 裴林清 赵星</creator><creatorcontrib>张亮 吕程 Kiet Tieu 裴林清 赵星</creatorcontrib><description>Deformation in a microcomponent is often constrained by surrounding joined material making the component under mixed loading and multiple stress states. In this study, molecular dynamics (MD) simulation are conducted to probe the effect of stress states on the deformation and fracture of nanocrystalline Cu. Tensile strain is applied on a Cu single crystal, bicrystal and polycrystal respectively, under two different tension boundary conditions. Simulations are first conducted on the bicrystal and polycrystal models without lattice imperfection. The results reveal that, compared with the performance of simulation models under free boundary condition, the transverse stress caused by the constrained boundary condition leads to a much higher tensile stress and can severely limit the plastic deformation, which in return promotes cleavage fracture in the model. Simulations are then performed on Cu single crystal and polycrystal with an initial crack. Under constrained boundary condition, the crack tip propagates rapidly in the single crystal in a cleavage manner while the crack becomes blunting and extends along the grain boundaries in the polycrystal. Under free boundary condition, massive dislocation activities dominate the deformation mechanisms and the crack plays a little role in both single crystals and polycrystals.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>EISSN: 1741-4199</identifier><identifier>DOI: 10.1088/1674-1056/23/9/098102</identifier><language>eng</language><subject>BICRYSTALS ; Boundary conditions ; COMPUTER SIMULATION ; Constraints ; Copper ; CRYSTAL STRUCTURE ; DEFORMATION ; DISLOCATIONS ; Fracture mechanics ; Polycrystals ; Single crystals ; STRESS ; Stresses ; 仿真模型 ; 分子动力学模拟 ; 塑性变形 ; 应力状态 ; 断裂模型 ; 纳米晶铜 ; 自由边界条件 ; 骨折</subject><ispartof>Chinese physics B, 2014-09, Vol.23 (9), p.488-495</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-161e4ed195f5851882d85ed8b510fcffc94b1a85d8e9060c18169cb424795f2a3</citedby><cites>FETCH-LOGICAL-c360t-161e4ed195f5851882d85ed8b510fcffc94b1a85d8e9060c18169cb424795f2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>张亮 吕程 Kiet Tieu 裴林清 赵星</creatorcontrib><title>Effect of stress state on deformation and fracture of nanocrystalline copper: Molecular dynamics simulation</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>Deformation in a microcomponent is often constrained by surrounding joined material making the component under mixed loading and multiple stress states. In this study, molecular dynamics (MD) simulation are conducted to probe the effect of stress states on the deformation and fracture of nanocrystalline Cu. Tensile strain is applied on a Cu single crystal, bicrystal and polycrystal respectively, under two different tension boundary conditions. Simulations are first conducted on the bicrystal and polycrystal models without lattice imperfection. The results reveal that, compared with the performance of simulation models under free boundary condition, the transverse stress caused by the constrained boundary condition leads to a much higher tensile stress and can severely limit the plastic deformation, which in return promotes cleavage fracture in the model. Simulations are then performed on Cu single crystal and polycrystal with an initial crack. Under constrained boundary condition, the crack tip propagates rapidly in the single crystal in a cleavage manner while the crack becomes blunting and extends along the grain boundaries in the polycrystal. Under free boundary condition, massive dislocation activities dominate the deformation mechanisms and the crack plays a little role in both single crystals and polycrystals.</description><subject>BICRYSTALS</subject><subject>Boundary conditions</subject><subject>COMPUTER SIMULATION</subject><subject>Constraints</subject><subject>Copper</subject><subject>CRYSTAL STRUCTURE</subject><subject>DEFORMATION</subject><subject>DISLOCATIONS</subject><subject>Fracture mechanics</subject><subject>Polycrystals</subject><subject>Single crystals</subject><subject>STRESS</subject><subject>Stresses</subject><subject>仿真模型</subject><subject>分子动力学模拟</subject><subject>塑性变形</subject><subject>应力状态</subject><subject>断裂模型</subject><subject>纳米晶铜</subject><subject>自由边界条件</subject><subject>骨折</subject><issn>1674-1056</issn><issn>2058-3834</issn><issn>1741-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAQRi0EEqVwBCSLFZsQO45dZ4mq8iMVsYG15TrjEpTYqZ0sehXOwp24Ao5adTGa0eh93-IhdEvJAyVS5lQsyowSLvKC5VVOKklJcYZmBeEyY5KV52h2Yi7RVYzfhIjEsBnqVtaCGbC3OA4BYkxLD4C9wzVYHzo9NOnWrsY2aDOMASbWaedN2Ce2bRsH2Pi-h_D3-4PffAtmbHXA9d7prjGpsenSY-q5RhdWtxFujnuOPp9WH8uXbP3-_Lp8XGeGCTJkVFAooaYVt1xyKmVRSw613HBKrLHWVOWGaslrCRURxFBJRWU2ZVEuUqTQbI7uD7198LsR4qC6JhpoW-3Aj1HRBWe8ZDzNHPEDaoKPMYBVfWg6HfaKEjXpVZM6NalTBVOVOuhNubtj7su77a5x21NQiILKUpCK_QOCEHwC</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>张亮 吕程 Kiet Tieu 裴林清 赵星</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140901</creationdate><title>Effect of stress state on deformation and fracture of nanocrystalline copper: Molecular dynamics simulation</title><author>张亮 吕程 Kiet Tieu 裴林清 赵星</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-161e4ed195f5851882d85ed8b510fcffc94b1a85d8e9060c18169cb424795f2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>BICRYSTALS</topic><topic>Boundary conditions</topic><topic>COMPUTER SIMULATION</topic><topic>Constraints</topic><topic>Copper</topic><topic>CRYSTAL STRUCTURE</topic><topic>DEFORMATION</topic><topic>DISLOCATIONS</topic><topic>Fracture mechanics</topic><topic>Polycrystals</topic><topic>Single crystals</topic><topic>STRESS</topic><topic>Stresses</topic><topic>仿真模型</topic><topic>分子动力学模拟</topic><topic>塑性变形</topic><topic>应力状态</topic><topic>断裂模型</topic><topic>纳米晶铜</topic><topic>自由边界条件</topic><topic>骨折</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>张亮 吕程 Kiet Tieu 裴林清 赵星</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>张亮 吕程 Kiet Tieu 裴林清 赵星</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of stress state on deformation and fracture of nanocrystalline copper: Molecular dynamics simulation</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>23</volume><issue>9</issue><spage>488</spage><epage>495</epage><pages>488-495</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><eissn>1741-4199</eissn><abstract>Deformation in a microcomponent is often constrained by surrounding joined material making the component under mixed loading and multiple stress states. In this study, molecular dynamics (MD) simulation are conducted to probe the effect of stress states on the deformation and fracture of nanocrystalline Cu. Tensile strain is applied on a Cu single crystal, bicrystal and polycrystal respectively, under two different tension boundary conditions. Simulations are first conducted on the bicrystal and polycrystal models without lattice imperfection. The results reveal that, compared with the performance of simulation models under free boundary condition, the transverse stress caused by the constrained boundary condition leads to a much higher tensile stress and can severely limit the plastic deformation, which in return promotes cleavage fracture in the model. Simulations are then performed on Cu single crystal and polycrystal with an initial crack. Under constrained boundary condition, the crack tip propagates rapidly in the single crystal in a cleavage manner while the crack becomes blunting and extends along the grain boundaries in the polycrystal. Under free boundary condition, massive dislocation activities dominate the deformation mechanisms and the crack plays a little role in both single crystals and polycrystals.</abstract><doi>10.1088/1674-1056/23/9/098102</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2014-09, Vol.23 (9), p.488-495
issn 1674-1056
2058-3834
1741-4199
language eng
recordid cdi_proquest_miscellaneous_1753543554
source IOP Publishing Journals
subjects BICRYSTALS
Boundary conditions
COMPUTER SIMULATION
Constraints
Copper
CRYSTAL STRUCTURE
DEFORMATION
DISLOCATIONS
Fracture mechanics
Polycrystals
Single crystals
STRESS
Stresses
仿真模型
分子动力学模拟
塑性变形
应力状态
断裂模型
纳米晶铜
自由边界条件
骨折
title Effect of stress state on deformation and fracture of nanocrystalline copper: Molecular dynamics simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20stress%20state%20on%20deformation%20and%20fracture%20of%20nanocrystalline%20copper%EF%BC%9A%20Molecular%20dynamics%20simulation&rft.jtitle=Chinese%20physics%20B&rft.au=%E5%BC%A0%E4%BA%AE%20%E5%90%95%E7%A8%8B%20Kiet%20Tieu%20%E8%A3%B4%E6%9E%97%E6%B8%85%20%E8%B5%B5%E6%98%9F&rft.date=2014-09-01&rft.volume=23&rft.issue=9&rft.spage=488&rft.epage=495&rft.pages=488-495&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/23/9/098102&rft_dat=%3Cproquest_cross%3E1753543554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753543554&rft_id=info:pmid/&rft_cqvip_id=662184609&rfr_iscdi=true