Are neural networks able to forecast nonlinear time series with moving average components?
In nonlinear time series forecasting, neural networks are interpreted as a nonlinear autoregressive models because they take as inputs the previous values of the time series. However, the use of neural networks to forecast nonlinear time series with moving components is an issue usually omitted in t...
Gespeichert in:
Veröffentlicht in: | Revista IEEE América Latina 2015-07, Vol.13 (7), p.2292-2300 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2300 |
---|---|
container_issue | 7 |
container_start_page | 2292 |
container_title | Revista IEEE América Latina |
container_volume | 13 |
creator | Cogollo, Myladis Rocio Velasquez, Juan David |
description | In nonlinear time series forecasting, neural networks are interpreted as a nonlinear autoregressive models because they take as inputs the previous values of the time series. However, the use of neural networks to forecast nonlinear time series with moving components is an issue usually omitted in the literature. In this article, we investigate the use of traditional neural networks for forecasting nonlinear time series with moving average components and we demonstrate the necessity of formulating new neural networks to adequately forecast this class of time series. Experimentally we show that traditional neural networks are not able to capture all the behavior of nonlinear time series with moving average components, which leads them to have a low capacity of forecast. |
doi_str_mv | 10.1109/TLA.2015.7273790 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753542507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7273790</ieee_id><sourcerecordid>3820297671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-5dd81864f8221bf795fb9c2c936b6c0ac55bec1476487cea416fc669ff0849c93</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhhdRsFbvgpeAFy9bk2w-T1LELyh4qRcvSzad1K27SU22Lf57t7SKePL0DszzDgxPlp0TPCIE6-vpZDyimPCRpLKQGh9kA8KZyrHW9PDXfJydpLTAuFBCFYPsdRwBeVhF0_TRbUJ8T8hUDaAuIBciWJM65INvag8moq5uASWINSS0qbs31IZ17efIrCGaOSAb2mXw4Lt0c5odOdMkONvnMHu5v5vePuaT54en2_EktwXVXc5nM0WUYE5RSionNXeVttTqQlTCYmM5r8ASJgVT0oJhRDgrhHYOK6Z7bJhd7e4uY_hYQerKtk4WmsZ4CKtUEikUV6Jg_0F5wRnlWPbo5R90EVbR94_0FJFYU8lwT-EdZWNIKYIrl7FuTfwsCS63XsreS7n1Uu699JWLXaUGgB_8e_sFUAiI1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1717092740</pqid></control><display><type>article</type><title>Are neural networks able to forecast nonlinear time series with moving average components?</title><source>IEEE Electronic Library (IEL)</source><creator>Cogollo, Myladis Rocio ; Velasquez, Juan David</creator><creatorcontrib>Cogollo, Myladis Rocio ; Velasquez, Juan David</creatorcontrib><description>In nonlinear time series forecasting, neural networks are interpreted as a nonlinear autoregressive models because they take as inputs the previous values of the time series. However, the use of neural networks to forecast nonlinear time series with moving components is an issue usually omitted in the literature. In this article, we investigate the use of traditional neural networks for forecasting nonlinear time series with moving average components and we demonstrate the necessity of formulating new neural networks to adequately forecast this class of time series. Experimentally we show that traditional neural networks are not able to capture all the behavior of nonlinear time series with moving average components, which leads them to have a low capacity of forecast.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2015.7273790</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Americas ; Artificial neural networks ; Autoregressive processes ; Biological neural networks ; Feedforward neural networks ; Forecasting ; Mathematical models ; Media ; moving averages ; Neural networks ; nonlinear time series ; Nonlinearity ; prediction ; Silicon ; Time series ; Time series analysis</subject><ispartof>Revista IEEE América Latina, 2015-07, Vol.13 (7), p.2292-2300</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-5dd81864f8221bf795fb9c2c936b6c0ac55bec1476487cea416fc669ff0849c93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7273790$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7273790$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cogollo, Myladis Rocio</creatorcontrib><creatorcontrib>Velasquez, Juan David</creatorcontrib><title>Are neural networks able to forecast nonlinear time series with moving average components?</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>In nonlinear time series forecasting, neural networks are interpreted as a nonlinear autoregressive models because they take as inputs the previous values of the time series. However, the use of neural networks to forecast nonlinear time series with moving components is an issue usually omitted in the literature. In this article, we investigate the use of traditional neural networks for forecasting nonlinear time series with moving average components and we demonstrate the necessity of formulating new neural networks to adequately forecast this class of time series. Experimentally we show that traditional neural networks are not able to capture all the behavior of nonlinear time series with moving average components, which leads them to have a low capacity of forecast.</description><subject>Americas</subject><subject>Artificial neural networks</subject><subject>Autoregressive processes</subject><subject>Biological neural networks</subject><subject>Feedforward neural networks</subject><subject>Forecasting</subject><subject>Mathematical models</subject><subject>Media</subject><subject>moving averages</subject><subject>Neural networks</subject><subject>nonlinear time series</subject><subject>Nonlinearity</subject><subject>prediction</subject><subject>Silicon</subject><subject>Time series</subject><subject>Time series analysis</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkU1LAzEQhhdRsFbvgpeAFy9bk2w-T1LELyh4qRcvSzad1K27SU22Lf57t7SKePL0DszzDgxPlp0TPCIE6-vpZDyimPCRpLKQGh9kA8KZyrHW9PDXfJydpLTAuFBCFYPsdRwBeVhF0_TRbUJ8T8hUDaAuIBciWJM65INvag8moq5uASWINSS0qbs31IZ17efIrCGaOSAb2mXw4Lt0c5odOdMkONvnMHu5v5vePuaT54en2_EktwXVXc5nM0WUYE5RSionNXeVttTqQlTCYmM5r8ASJgVT0oJhRDgrhHYOK6Z7bJhd7e4uY_hYQerKtk4WmsZ4CKtUEikUV6Jg_0F5wRnlWPbo5R90EVbR94_0FJFYU8lwT-EdZWNIKYIrl7FuTfwsCS63XsreS7n1Uu699JWLXaUGgB_8e_sFUAiI1g</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Cogollo, Myladis Rocio</creator><creator>Velasquez, Juan David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>201507</creationdate><title>Are neural networks able to forecast nonlinear time series with moving average components?</title><author>Cogollo, Myladis Rocio ; Velasquez, Juan David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-5dd81864f8221bf795fb9c2c936b6c0ac55bec1476487cea416fc669ff0849c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Americas</topic><topic>Artificial neural networks</topic><topic>Autoregressive processes</topic><topic>Biological neural networks</topic><topic>Feedforward neural networks</topic><topic>Forecasting</topic><topic>Mathematical models</topic><topic>Media</topic><topic>moving averages</topic><topic>Neural networks</topic><topic>nonlinear time series</topic><topic>Nonlinearity</topic><topic>prediction</topic><topic>Silicon</topic><topic>Time series</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Cogollo, Myladis Rocio</creatorcontrib><creatorcontrib>Velasquez, Juan David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cogollo, Myladis Rocio</au><au>Velasquez, Juan David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Are neural networks able to forecast nonlinear time series with moving average components?</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2015-07</date><risdate>2015</risdate><volume>13</volume><issue>7</issue><spage>2292</spage><epage>2300</epage><pages>2292-2300</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>In nonlinear time series forecasting, neural networks are interpreted as a nonlinear autoregressive models because they take as inputs the previous values of the time series. However, the use of neural networks to forecast nonlinear time series with moving components is an issue usually omitted in the literature. In this article, we investigate the use of traditional neural networks for forecasting nonlinear time series with moving average components and we demonstrate the necessity of formulating new neural networks to adequately forecast this class of time series. Experimentally we show that traditional neural networks are not able to capture all the behavior of nonlinear time series with moving average components, which leads them to have a low capacity of forecast.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2015.7273790</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-0992 |
ispartof | Revista IEEE América Latina, 2015-07, Vol.13 (7), p.2292-2300 |
issn | 1548-0992 1548-0992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753542507 |
source | IEEE Electronic Library (IEL) |
subjects | Americas Artificial neural networks Autoregressive processes Biological neural networks Feedforward neural networks Forecasting Mathematical models Media moving averages Neural networks nonlinear time series Nonlinearity prediction Silicon Time series Time series analysis |
title | Are neural networks able to forecast nonlinear time series with moving average components? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Are%20neural%20networks%20able%20to%20forecast%20nonlinear%20time%20series%20with%20moving%20average%20components?&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Cogollo,%20Myladis%20Rocio&rft.date=2015-07&rft.volume=13&rft.issue=7&rft.spage=2292&rft.epage=2300&rft.pages=2292-2300&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2015.7273790&rft_dat=%3Cproquest_RIE%3E3820297671%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1717092740&rft_id=info:pmid/&rft_ieee_id=7273790&rfr_iscdi=true |