Portfolio optimization with transaction costs: a two-period mean-variance model
In this paper, we study a multiperiod mean-variance portfolio optimization problem in the presence of proportional transaction costs. Many existing studies have shown that transaction costs can significantly affect investors’ behavior. However, even under simple assumptions, closed-form solutions ar...
Gespeichert in:
Veröffentlicht in: | Annals of operations research 2015-10, Vol.233 (1), p.135-156 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 156 |
---|---|
container_issue | 1 |
container_start_page | 135 |
container_title | Annals of operations research |
container_volume | 233 |
creator | Fu, Ying Hui Ng, Kien Ming Huang, Boray Huang, Huei Chuen |
description | In this paper, we study a multiperiod mean-variance portfolio optimization problem in the presence of proportional transaction costs. Many existing studies have shown that transaction costs can significantly affect investors’ behavior. However, even under simple assumptions, closed-form solutions are not easy to obtain when transaction costs are considered. As a result, they are often ignored in multiperiod portfolio analysis, which leads to suboptimal solutions. To provide better insight for this complex problem, this paper studies a two-period problem that considers one risk-free and one risky asset. Whenever there is a trade after the initial asset allocation, the investor incurs a linear transaction cost. Through a mean-variance model, we derive the closed-form expressions of the optimal thresholds for investors to re-allocate their resources. These thresholds divide the action space into three regions. Some important properties of the analytical solution are identified, which shed light on solving multiperiod problems. |
doi_str_mv | 10.1007/s10479-014-1574-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753542038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A429483149</galeid><sourcerecordid>A429483149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-a87df2481f73e3716428ef912c4dc2dcb9c2797d5f9002523899150adf82955b3</originalsourceid><addsrcrecordid>eNp1kU1rVDEUhoMoOFZ_gLsLblyYms8mcVeKtUKhLtp1yOQm05R7kzEn19b-ejMdwVaUQBIOz3M4hxeht5QcUkLUR6BEKIMJFZhKJfDdM7TqH4YN5_o5WhEmBZack5foFcANIYRSLVfo4lupLZYplaFsW5rTvWup5OE2teuhVZfB-YeCL9Dg0-CGdlvwNtRUxmEOLuMfriaXfRjmMobpNXoR3QThze_3AF2dfr48OcPnF1--nhyfYy8Zb9hpNUYmNI2KB67okWA6REOZF6Nno18bz5RRo4yG9NEZ18ZQSdwYNTNSrvkBer_vu63l-xKg2TmBD9PkcigLWKokl4IRrjv67i_0piw19-k6RQU9MorKP9TGTcGmHEvf3u-a2mPBjNCcCtOpw39Q_YxhTr7kEFOvPxE-PBLWC6QcoF-QNtcNNm4BeIrTPe5rAagh2m1Ns6s_LSV2F7TdB2170HYXtL3rDts70Nm8CfXRfv-VfgEGeakn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1714169715</pqid></control><display><type>article</type><title>Portfolio optimization with transaction costs: a two-period mean-variance model</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Fu, Ying Hui ; Ng, Kien Ming ; Huang, Boray ; Huang, Huei Chuen</creator><creatorcontrib>Fu, Ying Hui ; Ng, Kien Ming ; Huang, Boray ; Huang, Huei Chuen</creatorcontrib><description>In this paper, we study a multiperiod mean-variance portfolio optimization problem in the presence of proportional transaction costs. Many existing studies have shown that transaction costs can significantly affect investors’ behavior. However, even under simple assumptions, closed-form solutions are not easy to obtain when transaction costs are considered. As a result, they are often ignored in multiperiod portfolio analysis, which leads to suboptimal solutions. To provide better insight for this complex problem, this paper studies a two-period problem that considers one risk-free and one risky asset. Whenever there is a trade after the initial asset allocation, the investor incurs a linear transaction cost. Through a mean-variance model, we derive the closed-form expressions of the optimal thresholds for investors to re-allocate their resources. These thresholds divide the action space into three regions. Some important properties of the analytical solution are identified, which shed light on solving multiperiod problems.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-014-1574-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Allocations ; Asset allocation ; Business and Management ; Combinatorics ; Costs ; Exact solutions ; Expected values ; Investors ; Mathematical analysis ; Mathematical models ; Methods ; Operations research ; Operations Research/Decision Theory ; Optimization ; Portfolio management ; Securities analysis ; Studies ; Theory of Computation ; Thresholds ; Transaction costs ; Variance analysis</subject><ispartof>Annals of operations research, 2015-10, Vol.233 (1), p.135-156</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-a87df2481f73e3716428ef912c4dc2dcb9c2797d5f9002523899150adf82955b3</citedby><cites>FETCH-LOGICAL-c523t-a87df2481f73e3716428ef912c4dc2dcb9c2797d5f9002523899150adf82955b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-014-1574-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-014-1574-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Fu, Ying Hui</creatorcontrib><creatorcontrib>Ng, Kien Ming</creatorcontrib><creatorcontrib>Huang, Boray</creatorcontrib><creatorcontrib>Huang, Huei Chuen</creatorcontrib><title>Portfolio optimization with transaction costs: a two-period mean-variance model</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>In this paper, we study a multiperiod mean-variance portfolio optimization problem in the presence of proportional transaction costs. Many existing studies have shown that transaction costs can significantly affect investors’ behavior. However, even under simple assumptions, closed-form solutions are not easy to obtain when transaction costs are considered. As a result, they are often ignored in multiperiod portfolio analysis, which leads to suboptimal solutions. To provide better insight for this complex problem, this paper studies a two-period problem that considers one risk-free and one risky asset. Whenever there is a trade after the initial asset allocation, the investor incurs a linear transaction cost. Through a mean-variance model, we derive the closed-form expressions of the optimal thresholds for investors to re-allocate their resources. These thresholds divide the action space into three regions. Some important properties of the analytical solution are identified, which shed light on solving multiperiod problems.</description><subject>Algorithms</subject><subject>Allocations</subject><subject>Asset allocation</subject><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Costs</subject><subject>Exact solutions</subject><subject>Expected values</subject><subject>Investors</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Portfolio management</subject><subject>Securities analysis</subject><subject>Studies</subject><subject>Theory of Computation</subject><subject>Thresholds</subject><subject>Transaction costs</subject><subject>Variance analysis</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1rVDEUhoMoOFZ_gLsLblyYms8mcVeKtUKhLtp1yOQm05R7kzEn19b-ejMdwVaUQBIOz3M4hxeht5QcUkLUR6BEKIMJFZhKJfDdM7TqH4YN5_o5WhEmBZack5foFcANIYRSLVfo4lupLZYplaFsW5rTvWup5OE2teuhVZfB-YeCL9Dg0-CGdlvwNtRUxmEOLuMfriaXfRjmMobpNXoR3QThze_3AF2dfr48OcPnF1--nhyfYy8Zb9hpNUYmNI2KB67okWA6REOZF6Nno18bz5RRo4yG9NEZ18ZQSdwYNTNSrvkBer_vu63l-xKg2TmBD9PkcigLWKokl4IRrjv67i_0piw19-k6RQU9MorKP9TGTcGmHEvf3u-a2mPBjNCcCtOpw39Q_YxhTr7kEFOvPxE-PBLWC6QcoF-QNtcNNm4BeIrTPe5rAagh2m1Ns6s_LSV2F7TdB2170HYXtL3rDts70Nm8CfXRfv-VfgEGeakn</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Fu, Ying Hui</creator><creator>Ng, Kien Ming</creator><creator>Huang, Boray</creator><creator>Huang, Huei Chuen</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20151001</creationdate><title>Portfolio optimization with transaction costs: a two-period mean-variance model</title><author>Fu, Ying Hui ; Ng, Kien Ming ; Huang, Boray ; Huang, Huei Chuen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-a87df2481f73e3716428ef912c4dc2dcb9c2797d5f9002523899150adf82955b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Allocations</topic><topic>Asset allocation</topic><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Costs</topic><topic>Exact solutions</topic><topic>Expected values</topic><topic>Investors</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Portfolio management</topic><topic>Securities analysis</topic><topic>Studies</topic><topic>Theory of Computation</topic><topic>Thresholds</topic><topic>Transaction costs</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Ying Hui</creatorcontrib><creatorcontrib>Ng, Kien Ming</creatorcontrib><creatorcontrib>Huang, Boray</creatorcontrib><creatorcontrib>Huang, Huei Chuen</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Ying Hui</au><au>Ng, Kien Ming</au><au>Huang, Boray</au><au>Huang, Huei Chuen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Portfolio optimization with transaction costs: a two-period mean-variance model</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>233</volume><issue>1</issue><spage>135</spage><epage>156</epage><pages>135-156</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>In this paper, we study a multiperiod mean-variance portfolio optimization problem in the presence of proportional transaction costs. Many existing studies have shown that transaction costs can significantly affect investors’ behavior. However, even under simple assumptions, closed-form solutions are not easy to obtain when transaction costs are considered. As a result, they are often ignored in multiperiod portfolio analysis, which leads to suboptimal solutions. To provide better insight for this complex problem, this paper studies a two-period problem that considers one risk-free and one risky asset. Whenever there is a trade after the initial asset allocation, the investor incurs a linear transaction cost. Through a mean-variance model, we derive the closed-form expressions of the optimal thresholds for investors to re-allocate their resources. These thresholds divide the action space into three regions. Some important properties of the analytical solution are identified, which shed light on solving multiperiod problems.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-014-1574-x</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-5330 |
ispartof | Annals of operations research, 2015-10, Vol.233 (1), p.135-156 |
issn | 0254-5330 1572-9338 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753542038 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Allocations Asset allocation Business and Management Combinatorics Costs Exact solutions Expected values Investors Mathematical analysis Mathematical models Methods Operations research Operations Research/Decision Theory Optimization Portfolio management Securities analysis Studies Theory of Computation Thresholds Transaction costs Variance analysis |
title | Portfolio optimization with transaction costs: a two-period mean-variance model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A42%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Portfolio%20optimization%20with%20transaction%20costs:%20a%20two-period%20mean-variance%20model&rft.jtitle=Annals%20of%20operations%20research&rft.au=Fu,%20Ying%20Hui&rft.date=2015-10-01&rft.volume=233&rft.issue=1&rft.spage=135&rft.epage=156&rft.pages=135-156&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-014-1574-x&rft_dat=%3Cgale_proqu%3EA429483149%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1714169715&rft_id=info:pmid/&rft_galeid=A429483149&rfr_iscdi=true |