A revisit to queueing-inventory system with positive service time

A queueing-inventory system, with the item given with probability γ to a customer at his service completion epoch, is considered in this paper. Two control policies, ( s , Q ) and ( s , S ) are discussed. In both cases we obtain the joint distribution of the number of customers and the number of ite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research 2015-10, Vol.233 (1), p.221-236
Hauptverfasser: Krishnamoorthy, A., Manikandan, R., Lakshmy, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 236
container_issue 1
container_start_page 221
container_title Annals of operations research
container_volume 233
creator Krishnamoorthy, A.
Manikandan, R.
Lakshmy, B.
description A queueing-inventory system, with the item given with probability γ to a customer at his service completion epoch, is considered in this paper. Two control policies, ( s , Q ) and ( s , S ) are discussed. In both cases we obtain the joint distribution of the number of customers and the number of items in the inventory as the product of their marginals under the assumption that customers do not join when inventory level is zero. Optimization problems associated with both models are investigated and the optimal pairs ( s , S ) and ( s , Q ) and the corresponding expected minimum costs are obtained. Further we investigate numerically an expression for per unit time cost as a function of γ . This function exhibit convexity property. A comparison with Schwarz et al. (Queueing Syst. 54:55–78, 2006 ) is provided. The case of arbitrarily distributed service time is briefly indicated.
doi_str_mv 10.1007/s10479-013-1437-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753541707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A429483151</galeid><sourcerecordid>A429483151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-6d29d30dbe1ba2fd64f356c37a8d93bf6f4c31dc7ab709892528f06df159e84b3</originalsourceid><addsrcrecordid>eNp1kU2LFDEQhhtRcFz9Ad4avHgwayofne7jsLgqLHjRc-iPSm-W6WRMpcedf2_GEdwVJVCB4nmKKt6qeg38Ejg37wm4Mh3jIBkoadj9k2oD2gjWSdk-rTZcaMW0lPx59YLojnMO0OpNtd3WCQ-efK5zrL-vuKIPM_PhgCHHdKzpSBmX-ofPt_U-Fs4fsCZMBz9inf2CL6tnrt8Rvvr9X1Tfrj98vfrEbr58_Hy1vWGjFjKzZhLdJPk0IAy9cFOjnNTNKE3fTp0cXOPUKGEaTT8Y3rWd0KJ1vJkc6A5bNciL6u157j7Fsidlu3gacbfrA8aVLBgttQLDTUHf_IXexTWFsl2hQEHTNRr-UHO_Q-uDizn142mo3SrRqVbCL-ryH1R5Ey5-jAGdL_1HwrsHwrCSD0ilkJ9vM839SvQYhzM-pkiU0Nl98kufjha4PUVrz9HaEq09RWvviyPODhU2zJge3Pdf6SeRlqTt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1714169651</pqid></control><display><type>article</type><title>A revisit to queueing-inventory system with positive service time</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Krishnamoorthy, A. ; Manikandan, R. ; Lakshmy, B.</creator><creatorcontrib>Krishnamoorthy, A. ; Manikandan, R. ; Lakshmy, B.</creatorcontrib><description>A queueing-inventory system, with the item given with probability γ to a customer at his service completion epoch, is considered in this paper. Two control policies, ( s , Q ) and ( s , S ) are discussed. In both cases we obtain the joint distribution of the number of customers and the number of items in the inventory as the product of their marginals under the assumption that customers do not join when inventory level is zero. Optimization problems associated with both models are investigated and the optimal pairs ( s , S ) and ( s , Q ) and the corresponding expected minimum costs are obtained. Further we investigate numerically an expression for per unit time cost as a function of γ . This function exhibit convexity property. A comparison with Schwarz et al. (Queueing Syst. 54:55–78, 2006 ) is provided. The case of arbitrarily distributed service time is briefly indicated.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-013-1437-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Business and Management ; Combinatorics ; Customer services ; Inventories ; Inventory control ; Mathematical analysis ; Mathematical models ; Methods ; Minimum cost ; Operations research ; Operations Research/Decision Theory ; Optimization ; Query processing ; Queues ; Queuing ; Stockpiling ; Studies ; Theory of Computation</subject><ispartof>Annals of operations research, 2015-10, Vol.233 (1), p.221-236</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-6d29d30dbe1ba2fd64f356c37a8d93bf6f4c31dc7ab709892528f06df159e84b3</citedby><cites>FETCH-LOGICAL-c523t-6d29d30dbe1ba2fd64f356c37a8d93bf6f4c31dc7ab709892528f06df159e84b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-013-1437-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-013-1437-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Krishnamoorthy, A.</creatorcontrib><creatorcontrib>Manikandan, R.</creatorcontrib><creatorcontrib>Lakshmy, B.</creatorcontrib><title>A revisit to queueing-inventory system with positive service time</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>A queueing-inventory system, with the item given with probability γ to a customer at his service completion epoch, is considered in this paper. Two control policies, ( s , Q ) and ( s , S ) are discussed. In both cases we obtain the joint distribution of the number of customers and the number of items in the inventory as the product of their marginals under the assumption that customers do not join when inventory level is zero. Optimization problems associated with both models are investigated and the optimal pairs ( s , S ) and ( s , Q ) and the corresponding expected minimum costs are obtained. Further we investigate numerically an expression for per unit time cost as a function of γ . This function exhibit convexity property. A comparison with Schwarz et al. (Queueing Syst. 54:55–78, 2006 ) is provided. The case of arbitrarily distributed service time is briefly indicated.</description><subject>Algorithms</subject><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Customer services</subject><subject>Inventories</subject><subject>Inventory control</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Minimum cost</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Query processing</subject><subject>Queues</subject><subject>Queuing</subject><subject>Stockpiling</subject><subject>Studies</subject><subject>Theory of Computation</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU2LFDEQhhtRcFz9Ad4avHgwayofne7jsLgqLHjRc-iPSm-W6WRMpcedf2_GEdwVJVCB4nmKKt6qeg38Ejg37wm4Mh3jIBkoadj9k2oD2gjWSdk-rTZcaMW0lPx59YLojnMO0OpNtd3WCQ-efK5zrL-vuKIPM_PhgCHHdKzpSBmX-ofPt_U-Fs4fsCZMBz9inf2CL6tnrt8Rvvr9X1Tfrj98vfrEbr58_Hy1vWGjFjKzZhLdJPk0IAy9cFOjnNTNKE3fTp0cXOPUKGEaTT8Y3rWd0KJ1vJkc6A5bNciL6u157j7Fsidlu3gacbfrA8aVLBgttQLDTUHf_IXexTWFsl2hQEHTNRr-UHO_Q-uDizn142mo3SrRqVbCL-ryH1R5Ey5-jAGdL_1HwrsHwrCSD0ilkJ9vM839SvQYhzM-pkiU0Nl98kufjha4PUVrz9HaEq09RWvviyPODhU2zJge3Pdf6SeRlqTt</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Krishnamoorthy, A.</creator><creator>Manikandan, R.</creator><creator>Lakshmy, B.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20151001</creationdate><title>A revisit to queueing-inventory system with positive service time</title><author>Krishnamoorthy, A. ; Manikandan, R. ; Lakshmy, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-6d29d30dbe1ba2fd64f356c37a8d93bf6f4c31dc7ab709892528f06df159e84b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Customer services</topic><topic>Inventories</topic><topic>Inventory control</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Minimum cost</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Query processing</topic><topic>Queues</topic><topic>Queuing</topic><topic>Stockpiling</topic><topic>Studies</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnamoorthy, A.</creatorcontrib><creatorcontrib>Manikandan, R.</creatorcontrib><creatorcontrib>Lakshmy, B.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishnamoorthy, A.</au><au>Manikandan, R.</au><au>Lakshmy, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A revisit to queueing-inventory system with positive service time</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>233</volume><issue>1</issue><spage>221</spage><epage>236</epage><pages>221-236</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>A queueing-inventory system, with the item given with probability γ to a customer at his service completion epoch, is considered in this paper. Two control policies, ( s , Q ) and ( s , S ) are discussed. In both cases we obtain the joint distribution of the number of customers and the number of items in the inventory as the product of their marginals under the assumption that customers do not join when inventory level is zero. Optimization problems associated with both models are investigated and the optimal pairs ( s , S ) and ( s , Q ) and the corresponding expected minimum costs are obtained. Further we investigate numerically an expression for per unit time cost as a function of γ . This function exhibit convexity property. A comparison with Schwarz et al. (Queueing Syst. 54:55–78, 2006 ) is provided. The case of arbitrarily distributed service time is briefly indicated.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-013-1437-x</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2015-10, Vol.233 (1), p.221-236
issn 0254-5330
1572-9338
language eng
recordid cdi_proquest_miscellaneous_1753541707
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Algorithms
Business and Management
Combinatorics
Customer services
Inventories
Inventory control
Mathematical analysis
Mathematical models
Methods
Minimum cost
Operations research
Operations Research/Decision Theory
Optimization
Query processing
Queues
Queuing
Stockpiling
Studies
Theory of Computation
title A revisit to queueing-inventory system with positive service time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A19%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20revisit%20to%20queueing-inventory%20system%20with%20positive%20service%20time&rft.jtitle=Annals%20of%20operations%20research&rft.au=Krishnamoorthy,%20A.&rft.date=2015-10-01&rft.volume=233&rft.issue=1&rft.spage=221&rft.epage=236&rft.pages=221-236&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-013-1437-x&rft_dat=%3Cgale_proqu%3EA429483151%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1714169651&rft_id=info:pmid/&rft_galeid=A429483151&rfr_iscdi=true