Friction stir spot welding of low-carbon steel using an assembly-embedded rod tool

•The AER tool can quickly increase the rate of the rise in temperature.•The depth of TMAZ is about 6mm for the AER tool at a dwell time of 100s.•The failure load for the AER tool is 1.7 times greater than that for the plain tool.•Using the AER tool to lap weld 3mm thick upper plate can achieve high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials processing technology 2015-10, Vol.224, p.149-155
Hauptverfasser: Hsieh, Ming-Jer, Chiou, Yuang-Cherng, Lee, Rong-Tsong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue
container_start_page 149
container_title Journal of materials processing technology
container_volume 224
creator Hsieh, Ming-Jer
Chiou, Yuang-Cherng
Lee, Rong-Tsong
description •The AER tool can quickly increase the rate of the rise in temperature.•The depth of TMAZ is about 6mm for the AER tool at a dwell time of 100s.•The failure load for the AER tool is 1.7 times greater than that for the plain tool.•Using the AER tool to lap weld 3mm thick upper plate can achieve high lap strength.•The shear strength increases along with the depth of the stir zone. Friction stir spot welding (FSSW) has been conducted on a low carbon steel (SS400) plate pair with different thicknesses using the assembly-embedded rod (AER) and plain tools under a downward force of 8kN, a rotating speed of 1200rpm and a dwell time of 100s. The temperature at 2mm below the center of the stir surface rapidly increases to about 900°C using the AER tool, but it increases to about 510°C using the plain tool in primary dwell time. The rate of the rise in temperature using the AER tool is 1.7 times that using the pain tool. The depth of TMAZ using the AER tool is about 6mm; it is 2 times that using the plain tool. When the thickness of the upper plate is less than 3mm, the failure load using the AER tool is about 35kN. This is about 1.7 times higher than that using the plain tool. The failure load for a 4mm thick upper plate using the AER tool is still greater than that for a thinner plate using the plain tool. The strong bonding mechanism using the AER tool could be explained by diffusion reaction at a high interface temperature with a deep TMAZ.
doi_str_mv 10.1016/j.jmatprotec.2015.04.033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753541191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924013615001995</els_id><sourcerecordid>1753541191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-7d6924c20235ae8b60bee5498b0e6d3d693215dd70cefe74307edfe8fa686a5e3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhj2ARCn8B48sCec4TtIRKgpIlZAQzJZjX5AjNy62S9V_j0uRGFnuhvdDdw8hlEHJgDW3YzluVNoGn1CXFTBRQl0C52dkBouqLoDx5oJcxjgCsBa6bkZeV8HqZP1EY7KBxq1PdI_O2OmD-oE6vy-0Cv2PjujoLh4VNVEVI256dyjyRGPQ0OANTd67K3I-KBfx-nfPyfvq4W35VKxfHp-Xd-tCc8FS0Zom36QrqLhQ2PUN9IiiXnQ9YGN4VnnFhDEtaBywrTm0aAbsBtV0jRLI5-Tm1Jsf_txhTHJjo0bn1IR-FyVrBRc1YwuWrd3JqoOPMeAgt8FuVDhIBvKITo7yD508opNQy4wuR-9PUcyvfFkMMmqLk0ZjA-okjbf_l3wD1YaAIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753541191</pqid></control><display><type>article</type><title>Friction stir spot welding of low-carbon steel using an assembly-embedded rod tool</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hsieh, Ming-Jer ; Chiou, Yuang-Cherng ; Lee, Rong-Tsong</creator><creatorcontrib>Hsieh, Ming-Jer ; Chiou, Yuang-Cherng ; Lee, Rong-Tsong</creatorcontrib><description>•The AER tool can quickly increase the rate of the rise in temperature.•The depth of TMAZ is about 6mm for the AER tool at a dwell time of 100s.•The failure load for the AER tool is 1.7 times greater than that for the plain tool.•Using the AER tool to lap weld 3mm thick upper plate can achieve high lap strength.•The shear strength increases along with the depth of the stir zone. Friction stir spot welding (FSSW) has been conducted on a low carbon steel (SS400) plate pair with different thicknesses using the assembly-embedded rod (AER) and plain tools under a downward force of 8kN, a rotating speed of 1200rpm and a dwell time of 100s. The temperature at 2mm below the center of the stir surface rapidly increases to about 900°C using the AER tool, but it increases to about 510°C using the plain tool in primary dwell time. The rate of the rise in temperature using the AER tool is 1.7 times that using the pain tool. The depth of TMAZ using the AER tool is about 6mm; it is 2 times that using the plain tool. When the thickness of the upper plate is less than 3mm, the failure load using the AER tool is about 35kN. This is about 1.7 times higher than that using the plain tool. The failure load for a 4mm thick upper plate using the AER tool is still greater than that for a thinner plate using the plain tool. The strong bonding mechanism using the AER tool could be explained by diffusion reaction at a high interface temperature with a deep TMAZ.</description><identifier>ISSN: 0924-0136</identifier><identifier>DOI: 10.1016/j.jmatprotec.2015.04.033</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Assembly-embedded rod (AER) tool ; Bonding ; Diffusion welding ; Dwell time ; Failure ; Failure load ; Friction stir spot welding ; Friction stir welding ; Low carbon steel ; Low carbon steels ; Maraging steels ; Martensitic stainless steels ; Spot welding</subject><ispartof>Journal of materials processing technology, 2015-10, Vol.224, p.149-155</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-7d6924c20235ae8b60bee5498b0e6d3d693215dd70cefe74307edfe8fa686a5e3</citedby><cites>FETCH-LOGICAL-c351t-7d6924c20235ae8b60bee5498b0e6d3d693215dd70cefe74307edfe8fa686a5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0924013615001995$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Hsieh, Ming-Jer</creatorcontrib><creatorcontrib>Chiou, Yuang-Cherng</creatorcontrib><creatorcontrib>Lee, Rong-Tsong</creatorcontrib><title>Friction stir spot welding of low-carbon steel using an assembly-embedded rod tool</title><title>Journal of materials processing technology</title><description>•The AER tool can quickly increase the rate of the rise in temperature.•The depth of TMAZ is about 6mm for the AER tool at a dwell time of 100s.•The failure load for the AER tool is 1.7 times greater than that for the plain tool.•Using the AER tool to lap weld 3mm thick upper plate can achieve high lap strength.•The shear strength increases along with the depth of the stir zone. Friction stir spot welding (FSSW) has been conducted on a low carbon steel (SS400) plate pair with different thicknesses using the assembly-embedded rod (AER) and plain tools under a downward force of 8kN, a rotating speed of 1200rpm and a dwell time of 100s. The temperature at 2mm below the center of the stir surface rapidly increases to about 900°C using the AER tool, but it increases to about 510°C using the plain tool in primary dwell time. The rate of the rise in temperature using the AER tool is 1.7 times that using the pain tool. The depth of TMAZ using the AER tool is about 6mm; it is 2 times that using the plain tool. When the thickness of the upper plate is less than 3mm, the failure load using the AER tool is about 35kN. This is about 1.7 times higher than that using the plain tool. The failure load for a 4mm thick upper plate using the AER tool is still greater than that for a thinner plate using the plain tool. The strong bonding mechanism using the AER tool could be explained by diffusion reaction at a high interface temperature with a deep TMAZ.</description><subject>Assembly-embedded rod (AER) tool</subject><subject>Bonding</subject><subject>Diffusion welding</subject><subject>Dwell time</subject><subject>Failure</subject><subject>Failure load</subject><subject>Friction stir spot welding</subject><subject>Friction stir welding</subject><subject>Low carbon steel</subject><subject>Low carbon steels</subject><subject>Maraging steels</subject><subject>Martensitic stainless steels</subject><subject>Spot welding</subject><issn>0924-0136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhj2ARCn8B48sCec4TtIRKgpIlZAQzJZjX5AjNy62S9V_j0uRGFnuhvdDdw8hlEHJgDW3YzluVNoGn1CXFTBRQl0C52dkBouqLoDx5oJcxjgCsBa6bkZeV8HqZP1EY7KBxq1PdI_O2OmD-oE6vy-0Cv2PjujoLh4VNVEVI256dyjyRGPQ0OANTd67K3I-KBfx-nfPyfvq4W35VKxfHp-Xd-tCc8FS0Zom36QrqLhQ2PUN9IiiXnQ9YGN4VnnFhDEtaBywrTm0aAbsBtV0jRLI5-Tm1Jsf_txhTHJjo0bn1IR-FyVrBRc1YwuWrd3JqoOPMeAgt8FuVDhIBvKITo7yD508opNQy4wuR-9PUcyvfFkMMmqLk0ZjA-okjbf_l3wD1YaAIA</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Hsieh, Ming-Jer</creator><creator>Chiou, Yuang-Cherng</creator><creator>Lee, Rong-Tsong</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20151001</creationdate><title>Friction stir spot welding of low-carbon steel using an assembly-embedded rod tool</title><author>Hsieh, Ming-Jer ; Chiou, Yuang-Cherng ; Lee, Rong-Tsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-7d6924c20235ae8b60bee5498b0e6d3d693215dd70cefe74307edfe8fa686a5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Assembly-embedded rod (AER) tool</topic><topic>Bonding</topic><topic>Diffusion welding</topic><topic>Dwell time</topic><topic>Failure</topic><topic>Failure load</topic><topic>Friction stir spot welding</topic><topic>Friction stir welding</topic><topic>Low carbon steel</topic><topic>Low carbon steels</topic><topic>Maraging steels</topic><topic>Martensitic stainless steels</topic><topic>Spot welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Ming-Jer</creatorcontrib><creatorcontrib>Chiou, Yuang-Cherng</creatorcontrib><creatorcontrib>Lee, Rong-Tsong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsieh, Ming-Jer</au><au>Chiou, Yuang-Cherng</au><au>Lee, Rong-Tsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Friction stir spot welding of low-carbon steel using an assembly-embedded rod tool</atitle><jtitle>Journal of materials processing technology</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>224</volume><spage>149</spage><epage>155</epage><pages>149-155</pages><issn>0924-0136</issn><abstract>•The AER tool can quickly increase the rate of the rise in temperature.•The depth of TMAZ is about 6mm for the AER tool at a dwell time of 100s.•The failure load for the AER tool is 1.7 times greater than that for the plain tool.•Using the AER tool to lap weld 3mm thick upper plate can achieve high lap strength.•The shear strength increases along with the depth of the stir zone. Friction stir spot welding (FSSW) has been conducted on a low carbon steel (SS400) plate pair with different thicknesses using the assembly-embedded rod (AER) and plain tools under a downward force of 8kN, a rotating speed of 1200rpm and a dwell time of 100s. The temperature at 2mm below the center of the stir surface rapidly increases to about 900°C using the AER tool, but it increases to about 510°C using the plain tool in primary dwell time. The rate of the rise in temperature using the AER tool is 1.7 times that using the pain tool. The depth of TMAZ using the AER tool is about 6mm; it is 2 times that using the plain tool. When the thickness of the upper plate is less than 3mm, the failure load using the AER tool is about 35kN. This is about 1.7 times higher than that using the plain tool. The failure load for a 4mm thick upper plate using the AER tool is still greater than that for a thinner plate using the plain tool. The strong bonding mechanism using the AER tool could be explained by diffusion reaction at a high interface temperature with a deep TMAZ.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jmatprotec.2015.04.033</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-0136
ispartof Journal of materials processing technology, 2015-10, Vol.224, p.149-155
issn 0924-0136
language eng
recordid cdi_proquest_miscellaneous_1753541191
source Elsevier ScienceDirect Journals Complete
subjects Assembly-embedded rod (AER) tool
Bonding
Diffusion welding
Dwell time
Failure
Failure load
Friction stir spot welding
Friction stir welding
Low carbon steel
Low carbon steels
Maraging steels
Martensitic stainless steels
Spot welding
title Friction stir spot welding of low-carbon steel using an assembly-embedded rod tool
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Friction%20stir%20spot%20welding%20of%20low-carbon%20steel%20using%20an%20assembly-embedded%20rod%20tool&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Hsieh,%20Ming-Jer&rft.date=2015-10-01&rft.volume=224&rft.spage=149&rft.epage=155&rft.pages=149-155&rft.issn=0924-0136&rft_id=info:doi/10.1016/j.jmatprotec.2015.04.033&rft_dat=%3Cproquest_cross%3E1753541191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753541191&rft_id=info:pmid/&rft_els_id=S0924013615001995&rfr_iscdi=true