An improved interpolating element-free Galerkin method for elasticity
Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method pres...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2013-12, Vol.22 (12), p.43-50 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50 |
---|---|
container_issue | 12 |
container_start_page | 43 |
container_title | Chinese physics B |
container_volume | 22 |
creator | 孙凤欣 王聚丰 程玉民 |
description | Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method. |
doi_str_mv | 10.1088/1674-1056/22/12/120203 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753539429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>48083361</cqvip_id><sourcerecordid>1753539429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-f8fcaab838e538fc96333b0312e26baf6cc5de7c360caf49f30dbb6852aa37033</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_Qdabl7WTzG42PZZSq1DwoueQzU7a6H60yVbw37tLS2Fg5vC8L8PD2COHFw5KzbgsspRDLmdCzPg4IACv2ERArlJUmF2zyQW6ZXcxfgNIDgInbLVoE9_sQ_dLVeLbnsK-q03v221CNTXU9qkLRMna1BR-fJs01O-6KnFdGAATe299_3fPbpypIz2c95R9va4-l2_p5mP9vlxsUos8G5qUs8aUChXlONxziYglIBckZGmctDavqLAowRqXzR1CVZZS5cIYLABxyp5PvcPDhyPFXjc-Wqpr01J3jJoXOeY4z8R8QOUJtaGLMZDT--AbE_40Bz1606MSPSrRQmg-zuhtCD6dg7uu3R4GE5dkpkAhSo7_cNRseA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753539429</pqid></control><display><type>article</type><title>An improved interpolating element-free Galerkin method for elasticity</title><source>IOP Publishing Journals</source><creator>孙凤欣 王聚丰 程玉民</creator><creatorcontrib>孙凤欣 王聚丰 程玉民</creatorcontrib><description>Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>EISSN: 1741-4199</identifier><identifier>DOI: 10.1088/1674-1056/22/12/120203</identifier><language>eng</language><subject>Approximation ; Boundary conditions ; EFG法 ; Elasticity ; Galerkin methods ; Least squares method ; Mathematical analysis ; Mathematical models ; MLS ; S方法 ; Two dimensional ; Weight function ; 弹性问题 ; 插值 ; 无网格伽辽金法 ; 本质边界条件 ; 移动最小二乘</subject><ispartof>Chinese physics B, 2013-12, Vol.22 (12), p.43-50</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-f8fcaab838e538fc96333b0312e26baf6cc5de7c360caf49f30dbb6852aa37033</citedby><cites>FETCH-LOGICAL-c314t-f8fcaab838e538fc96333b0312e26baf6cc5de7c360caf49f30dbb6852aa37033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>孙凤欣 王聚丰 程玉民</creatorcontrib><title>An improved interpolating element-free Galerkin method for elasticity</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>EFG法</subject><subject>Elasticity</subject><subject>Galerkin methods</subject><subject>Least squares method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>MLS</subject><subject>S方法</subject><subject>Two dimensional</subject><subject>Weight function</subject><subject>弹性问题</subject><subject>插值</subject><subject>无网格伽辽金法</subject><subject>本质边界条件</subject><subject>移动最小二乘</subject><issn>1674-1056</issn><issn>2058-3834</issn><issn>1741-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt_Qdabl7WTzG42PZZSq1DwoueQzU7a6H60yVbw37tLS2Fg5vC8L8PD2COHFw5KzbgsspRDLmdCzPg4IACv2ERArlJUmF2zyQW6ZXcxfgNIDgInbLVoE9_sQ_dLVeLbnsK-q03v221CNTXU9qkLRMna1BR-fJs01O-6KnFdGAATe299_3fPbpypIz2c95R9va4-l2_p5mP9vlxsUos8G5qUs8aUChXlONxziYglIBckZGmctDavqLAowRqXzR1CVZZS5cIYLABxyp5PvcPDhyPFXjc-Wqpr01J3jJoXOeY4z8R8QOUJtaGLMZDT--AbE_40Bz1606MSPSrRQmg-zuhtCD6dg7uu3R4GE5dkpkAhSo7_cNRseA</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>孙凤欣 王聚丰 程玉民</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>An improved interpolating element-free Galerkin method for elasticity</title><author>孙凤欣 王聚丰 程玉民</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-f8fcaab838e538fc96333b0312e26baf6cc5de7c360caf49f30dbb6852aa37033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>EFG法</topic><topic>Elasticity</topic><topic>Galerkin methods</topic><topic>Least squares method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>MLS</topic><topic>S方法</topic><topic>Two dimensional</topic><topic>Weight function</topic><topic>弹性问题</topic><topic>插值</topic><topic>无网格伽辽金法</topic><topic>本质边界条件</topic><topic>移动最小二乘</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>孙凤欣 王聚丰 程玉民</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>孙凤欣 王聚丰 程玉民</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved interpolating element-free Galerkin method for elasticity</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>22</volume><issue>12</issue><spage>43</spage><epage>50</epage><pages>43-50</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><eissn>1741-4199</eissn><abstract>Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method.</abstract><doi>10.1088/1674-1056/22/12/120203</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | Chinese physics B, 2013-12, Vol.22 (12), p.43-50 |
issn | 1674-1056 2058-3834 1741-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753539429 |
source | IOP Publishing Journals |
subjects | Approximation Boundary conditions EFG法 Elasticity Galerkin methods Least squares method Mathematical analysis Mathematical models MLS S方法 Two dimensional Weight function 弹性问题 插值 无网格伽辽金法 本质边界条件 移动最小二乘 |
title | An improved interpolating element-free Galerkin method for elasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20interpolating%20element-free%20Galerkin%20method%20for%20elasticity&rft.jtitle=Chinese%20physics%20B&rft.au=%E5%AD%99%E5%87%A4%E6%AC%A3%20%E7%8E%8B%E8%81%9A%E4%B8%B0%20%E7%A8%8B%E7%8E%89%E6%B0%91&rft.date=2013-12-01&rft.volume=22&rft.issue=12&rft.spage=43&rft.epage=50&rft.pages=43-50&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/22/12/120203&rft_dat=%3Cproquest_cross%3E1753539429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753539429&rft_id=info:pmid/&rft_cqvip_id=48083361&rfr_iscdi=true |