An improved interpolating element-free Galerkin method for elasticity

Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method pres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2013-12, Vol.22 (12), p.43-50
1. Verfasser: 孙凤欣 王聚丰 程玉民
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue 12
container_start_page 43
container_title Chinese physics B
container_volume 22
creator 孙凤欣 王聚丰 程玉民
description Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method.
doi_str_mv 10.1088/1674-1056/22/12/120203
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753539429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>48083361</cqvip_id><sourcerecordid>1753539429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-f8fcaab838e538fc96333b0312e26baf6cc5de7c360caf49f30dbb6852aa37033</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_Qdabl7WTzG42PZZSq1DwoueQzU7a6H60yVbw37tLS2Fg5vC8L8PD2COHFw5KzbgsspRDLmdCzPg4IACv2ERArlJUmF2zyQW6ZXcxfgNIDgInbLVoE9_sQ_dLVeLbnsK-q03v221CNTXU9qkLRMna1BR-fJs01O-6KnFdGAATe299_3fPbpypIz2c95R9va4-l2_p5mP9vlxsUos8G5qUs8aUChXlONxziYglIBckZGmctDavqLAowRqXzR1CVZZS5cIYLABxyp5PvcPDhyPFXjc-Wqpr01J3jJoXOeY4z8R8QOUJtaGLMZDT--AbE_40Bz1606MSPSrRQmg-zuhtCD6dg7uu3R4GE5dkpkAhSo7_cNRseA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753539429</pqid></control><display><type>article</type><title>An improved interpolating element-free Galerkin method for elasticity</title><source>IOP Publishing Journals</source><creator>孙凤欣 王聚丰 程玉民</creator><creatorcontrib>孙凤欣 王聚丰 程玉民</creatorcontrib><description>Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>EISSN: 1741-4199</identifier><identifier>DOI: 10.1088/1674-1056/22/12/120203</identifier><language>eng</language><subject>Approximation ; Boundary conditions ; EFG法 ; Elasticity ; Galerkin methods ; Least squares method ; Mathematical analysis ; Mathematical models ; MLS ; S方法 ; Two dimensional ; Weight function ; 弹性问题 ; 插值 ; 无网格伽辽金法 ; 本质边界条件 ; 移动最小二乘</subject><ispartof>Chinese physics B, 2013-12, Vol.22 (12), p.43-50</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-f8fcaab838e538fc96333b0312e26baf6cc5de7c360caf49f30dbb6852aa37033</citedby><cites>FETCH-LOGICAL-c314t-f8fcaab838e538fc96333b0312e26baf6cc5de7c360caf49f30dbb6852aa37033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>孙凤欣 王聚丰 程玉民</creatorcontrib><title>An improved interpolating element-free Galerkin method for elasticity</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>EFG法</subject><subject>Elasticity</subject><subject>Galerkin methods</subject><subject>Least squares method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>MLS</subject><subject>S方法</subject><subject>Two dimensional</subject><subject>Weight function</subject><subject>弹性问题</subject><subject>插值</subject><subject>无网格伽辽金法</subject><subject>本质边界条件</subject><subject>移动最小二乘</subject><issn>1674-1056</issn><issn>2058-3834</issn><issn>1741-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt_Qdabl7WTzG42PZZSq1DwoueQzU7a6H60yVbw37tLS2Fg5vC8L8PD2COHFw5KzbgsspRDLmdCzPg4IACv2ERArlJUmF2zyQW6ZXcxfgNIDgInbLVoE9_sQ_dLVeLbnsK-q03v221CNTXU9qkLRMna1BR-fJs01O-6KnFdGAATe299_3fPbpypIz2c95R9va4-l2_p5mP9vlxsUos8G5qUs8aUChXlONxziYglIBckZGmctDavqLAowRqXzR1CVZZS5cIYLABxyp5PvcPDhyPFXjc-Wqpr01J3jJoXOeY4z8R8QOUJtaGLMZDT--AbE_40Bz1606MSPSrRQmg-zuhtCD6dg7uu3R4GE5dkpkAhSo7_cNRseA</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>孙凤欣 王聚丰 程玉民</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>An improved interpolating element-free Galerkin method for elasticity</title><author>孙凤欣 王聚丰 程玉民</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-f8fcaab838e538fc96333b0312e26baf6cc5de7c360caf49f30dbb6852aa37033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>EFG法</topic><topic>Elasticity</topic><topic>Galerkin methods</topic><topic>Least squares method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>MLS</topic><topic>S方法</topic><topic>Two dimensional</topic><topic>Weight function</topic><topic>弹性问题</topic><topic>插值</topic><topic>无网格伽辽金法</topic><topic>本质边界条件</topic><topic>移动最小二乘</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>孙凤欣 王聚丰 程玉民</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>孙凤欣 王聚丰 程玉民</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved interpolating element-free Galerkin method for elasticity</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>22</volume><issue>12</issue><spage>43</spage><epage>50</epage><pages>43-50</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><eissn>1741-4199</eissn><abstract>Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method.</abstract><doi>10.1088/1674-1056/22/12/120203</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2013-12, Vol.22 (12), p.43-50
issn 1674-1056
2058-3834
1741-4199
language eng
recordid cdi_proquest_miscellaneous_1753539429
source IOP Publishing Journals
subjects Approximation
Boundary conditions
EFG法
Elasticity
Galerkin methods
Least squares method
Mathematical analysis
Mathematical models
MLS
S方法
Two dimensional
Weight function
弹性问题
插值
无网格伽辽金法
本质边界条件
移动最小二乘
title An improved interpolating element-free Galerkin method for elasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20interpolating%20element-free%20Galerkin%20method%20for%20elasticity&rft.jtitle=Chinese%20physics%20B&rft.au=%E5%AD%99%E5%87%A4%E6%AC%A3%20%E7%8E%8B%E8%81%9A%E4%B8%B0%20%E7%A8%8B%E7%8E%89%E6%B0%91&rft.date=2013-12-01&rft.volume=22&rft.issue=12&rft.spage=43&rft.epage=50&rft.pages=43-50&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/22/12/120203&rft_dat=%3Cproquest_cross%3E1753539429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753539429&rft_id=info:pmid/&rft_cqvip_id=48083361&rfr_iscdi=true