An improved local radial point interpolation method for transient heat conduction analysis
The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2013-06, Vol.22 (6), p.127-134 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134 |
---|---|
container_issue | 6 |
container_start_page | 127 |
container_title | Chinese physics B |
container_volume | 22 |
creator | 王峰 林皋 郑保敬 胡志强 |
description | The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions. |
doi_str_mv | 10.1088/1674-1056/22/6/060206 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753539139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>46150718</cqvip_id><sourcerecordid>1753539139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-4843d9f53586ed5b187b262d49f701887f742e3d0606e89ce78c50be69898d203</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKs_QYg7N-PkMXnMshRfUHCjGzchTTJtZCZpk6nQf29qSxeXs_nOgfsBcI_RE0ZS1piLpsKI8ZqQmteII4L4BZgQxGRFJW0uweTMXIObnH8Q4hgROgHfswD9sEnx11nYR6N7mLT1JTbRhxGWc2kTez36GODgxnW0sIsJjkmH7F1B1k6P0MRgd-Yf0kH3--zzLbjqdJ_d3Smn4Ovl-XP-Vi0-Xt_ns0VlKCZj1ciG2rZjlEnuLFtiKZaEE9u0nUBYStGJhjhqy1vcydY4IQ1DS8db2UpLEJ2Cx-Nu-WK7c3lUg8_G9b0OLu6ywqJs0xbTtqDsiJoUc06uU5vkB532CiN1cKkOntTBkyJEcXV0WXoPp946htXWh9W52HDMkMCS_gHThXKy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753539139</pqid></control><display><type>article</type><title>An improved local radial point interpolation method for transient heat conduction analysis</title><source>IOP Publishing Journals</source><creator>王峰 林皋 郑保敬 胡志强</creator><creatorcontrib>王峰 林皋 郑保敬 胡志强</creatorcontrib><description>The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>EISSN: 1741-4199</identifier><identifier>DOI: 10.1088/1674-1056/22/6/060206</identifier><language>eng</language><subject>Finite element method ; Interpolation ; Mathematical analysis ; Mathematical models ; Penalty function ; Shape functions ; Splines ; Thin plates ; Transient heat conduction</subject><ispartof>Chinese physics B, 2013-06, Vol.22 (6), p.127-134</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-4843d9f53586ed5b187b262d49f701887f742e3d0606e89ce78c50be69898d203</citedby><cites>FETCH-LOGICAL-c312t-4843d9f53586ed5b187b262d49f701887f742e3d0606e89ce78c50be69898d203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>王峰 林皋 郑保敬 胡志强</creatorcontrib><title>An improved local radial point interpolation method for transient heat conduction analysis</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions.</description><subject>Finite element method</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Penalty function</subject><subject>Shape functions</subject><subject>Splines</subject><subject>Thin plates</subject><subject>Transient heat conduction</subject><issn>1674-1056</issn><issn>2058-3834</issn><issn>1741-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKs_QYg7N-PkMXnMshRfUHCjGzchTTJtZCZpk6nQf29qSxeXs_nOgfsBcI_RE0ZS1piLpsKI8ZqQmteII4L4BZgQxGRFJW0uweTMXIObnH8Q4hgROgHfswD9sEnx11nYR6N7mLT1JTbRhxGWc2kTez36GODgxnW0sIsJjkmH7F1B1k6P0MRgd-Yf0kH3--zzLbjqdJ_d3Smn4Ovl-XP-Vi0-Xt_ns0VlKCZj1ciG2rZjlEnuLFtiKZaEE9u0nUBYStGJhjhqy1vcydY4IQ1DS8db2UpLEJ2Cx-Nu-WK7c3lUg8_G9b0OLu6ywqJs0xbTtqDsiJoUc06uU5vkB532CiN1cKkOntTBkyJEcXV0WXoPp946htXWh9W52HDMkMCS_gHThXKy</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>王峰 林皋 郑保敬 胡志强</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130601</creationdate><title>An improved local radial point interpolation method for transient heat conduction analysis</title><author>王峰 林皋 郑保敬 胡志强</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-4843d9f53586ed5b187b262d49f701887f742e3d0606e89ce78c50be69898d203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Finite element method</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Penalty function</topic><topic>Shape functions</topic><topic>Splines</topic><topic>Thin plates</topic><topic>Transient heat conduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>王峰 林皋 郑保敬 胡志强</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>王峰 林皋 郑保敬 胡志强</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved local radial point interpolation method for transient heat conduction analysis</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>22</volume><issue>6</issue><spage>127</spage><epage>134</epage><pages>127-134</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><eissn>1741-4199</eissn><abstract>The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions.</abstract><doi>10.1088/1674-1056/22/6/060206</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | Chinese physics B, 2013-06, Vol.22 (6), p.127-134 |
issn | 1674-1056 2058-3834 1741-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753539139 |
source | IOP Publishing Journals |
subjects | Finite element method Interpolation Mathematical analysis Mathematical models Penalty function Shape functions Splines Thin plates Transient heat conduction |
title | An improved local radial point interpolation method for transient heat conduction analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20local%20radial%20point%20interpolation%20method%20for%20transient%20heat%20conduction%20analysis&rft.jtitle=Chinese%20physics%20B&rft.au=%E7%8E%8B%E5%B3%B0%20%E6%9E%97%E7%9A%8B%20%E9%83%91%E4%BF%9D%E6%95%AC%20%E8%83%A1%E5%BF%97%E5%BC%BA&rft.date=2013-06-01&rft.volume=22&rft.issue=6&rft.spage=127&rft.epage=134&rft.pages=127-134&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/22/6/060206&rft_dat=%3Cproquest_cross%3E1753539139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753539139&rft_id=info:pmid/&rft_cqvip_id=46150718&rfr_iscdi=true |