Properties of cosmological filaments extracted from Eulerian simulations

Using a new parallel algorithm implemented within the VisIt framework, we analysed large cosmological grid simulations to study the properties of baryons in filaments. The procedure allows us to build large catalogues with up to ∼3 × 104 filaments per simulated volume and to investigate the properti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2015-10, Vol.453 (2), p.1164-1185
Hauptverfasser: Gheller, C., Vazza, F., Favre, J., Brüggen, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1185
container_issue 2
container_start_page 1164
container_title Monthly notices of the Royal Astronomical Society
container_volume 453
creator Gheller, C.
Vazza, F.
Favre, J.
Brüggen, M.
description Using a new parallel algorithm implemented within the VisIt framework, we analysed large cosmological grid simulations to study the properties of baryons in filaments. The procedure allows us to build large catalogues with up to ∼3 × 104 filaments per simulated volume and to investigate the properties of cosmic filaments for very large volumes at high resolution (up to 3003 Mpc3 simulated with 20483 cells). We determined scaling relations for the mass, volume, length and temperature of filaments and compared them to those of galaxy clusters. The longest filaments have a total length of about 200 Mpc with a mass of several 1015 M⊙. We also investigated the effects of different gas physics. Radiative cooling significantly modifies the thermal properties of the warm-hot-intergalactic medium of filaments, mainly by lowering their mean temperature via line cooling. On the other hand, powerful feedback from active galactic nuclei in surrounding haloes can heat up the gas in filaments. The impact of shock-accelerated cosmic rays from diffusive shock acceleration on filaments is small and the ratio between cosmic ray and gas pressure within filaments is of the order of ∼10–20 per cent.
doi_str_mv 10.1093/mnras/stv1646
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753534636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stv1646</oup_id><sourcerecordid>1753534636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-da80698170bb7bb00f73b1a9178564b2d3b641fae4c8154ed84ea453d06772103</originalsourceid><addsrcrecordid>eNqN0U1Lw0AQBuBFFKzVo_eAFy-xM9mv5CilWqGgBz2HTbKRLZts3N2I_nsbWxC86GkuD_PO8BJyiXCDUNBF13sVFiG-o2DiiMyQCp5mhRDHZAZAeZpLxFNyFsIWABjNxIysn7wbtI9Gh8S1Se1C56x7NbWySWus6nQfQ6I_old11E3Setclq9Fqb1SfBNONVkXj-nBOTlplg744zDl5uVs9L9fp5vH-YXm7SWsGNKaNykEUOUqoKllVAK2kFaoCZc4Fq7KGVoJhqzSrc-RMNznTinHagJAyQ6Bzcr3fO3j3NuoQy86EWlureu3GUKLklFMmqPgHzTKUguUTvfpFt270_e6RnUJJETifstO9qr0Lweu2HLzplP8sEcqpgvK7gvJQwc8Bbhz-oF9gZYiG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1717310550</pqid></control><display><type>article</type><title>Properties of cosmological filaments extracted from Eulerian simulations</title><source>Oxford Journals Open Access Collection</source><creator>Gheller, C. ; Vazza, F. ; Favre, J. ; Brüggen, M.</creator><creatorcontrib>Gheller, C. ; Vazza, F. ; Favre, J. ; Brüggen, M.</creatorcontrib><description>Using a new parallel algorithm implemented within the VisIt framework, we analysed large cosmological grid simulations to study the properties of baryons in filaments. The procedure allows us to build large catalogues with up to ∼3 × 104 filaments per simulated volume and to investigate the properties of cosmic filaments for very large volumes at high resolution (up to 3003 Mpc3 simulated with 20483 cells). We determined scaling relations for the mass, volume, length and temperature of filaments and compared them to those of galaxy clusters. The longest filaments have a total length of about 200 Mpc with a mass of several 1015 M⊙. We also investigated the effects of different gas physics. Radiative cooling significantly modifies the thermal properties of the warm-hot-intergalactic medium of filaments, mainly by lowering their mean temperature via line cooling. On the other hand, powerful feedback from active galactic nuclei in surrounding haloes can heat up the gas in filaments. The impact of shock-accelerated cosmic rays from diffusive shock acceleration on filaments is small and the ratio between cosmic ray and gas pressure within filaments is of the order of ∼10–20 per cent.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stv1646</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Acceleration ; Algorithms ; Computer simulation ; Construction ; Cooling ; Cosmic rays ; Cosmology ; Diffusion rate ; Filaments ; Simulation ; Star &amp; galaxy formation ; Thermal properties</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2015-10, Vol.453 (2), p.1164-1185</ispartof><rights>2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2015</rights><rights>Copyright Oxford University Press, UK Oct 21, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-da80698170bb7bb00f73b1a9178564b2d3b641fae4c8154ed84ea453d06772103</citedby><cites>FETCH-LOGICAL-c403t-da80698170bb7bb00f73b1a9178564b2d3b641fae4c8154ed84ea453d06772103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stv1646$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Gheller, C.</creatorcontrib><creatorcontrib>Vazza, F.</creatorcontrib><creatorcontrib>Favre, J.</creatorcontrib><creatorcontrib>Brüggen, M.</creatorcontrib><title>Properties of cosmological filaments extracted from Eulerian simulations</title><title>Monthly notices of the Royal Astronomical Society</title><description>Using a new parallel algorithm implemented within the VisIt framework, we analysed large cosmological grid simulations to study the properties of baryons in filaments. The procedure allows us to build large catalogues with up to ∼3 × 104 filaments per simulated volume and to investigate the properties of cosmic filaments for very large volumes at high resolution (up to 3003 Mpc3 simulated with 20483 cells). We determined scaling relations for the mass, volume, length and temperature of filaments and compared them to those of galaxy clusters. The longest filaments have a total length of about 200 Mpc with a mass of several 1015 M⊙. We also investigated the effects of different gas physics. Radiative cooling significantly modifies the thermal properties of the warm-hot-intergalactic medium of filaments, mainly by lowering their mean temperature via line cooling. On the other hand, powerful feedback from active galactic nuclei in surrounding haloes can heat up the gas in filaments. The impact of shock-accelerated cosmic rays from diffusive shock acceleration on filaments is small and the ratio between cosmic ray and gas pressure within filaments is of the order of ∼10–20 per cent.</description><subject>Acceleration</subject><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Construction</subject><subject>Cooling</subject><subject>Cosmic rays</subject><subject>Cosmology</subject><subject>Diffusion rate</subject><subject>Filaments</subject><subject>Simulation</subject><subject>Star &amp; galaxy formation</subject><subject>Thermal properties</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0U1Lw0AQBuBFFKzVo_eAFy-xM9mv5CilWqGgBz2HTbKRLZts3N2I_nsbWxC86GkuD_PO8BJyiXCDUNBF13sVFiG-o2DiiMyQCp5mhRDHZAZAeZpLxFNyFsIWABjNxIysn7wbtI9Gh8S1Se1C56x7NbWySWus6nQfQ6I_old11E3Setclq9Fqb1SfBNONVkXj-nBOTlplg744zDl5uVs9L9fp5vH-YXm7SWsGNKaNykEUOUqoKllVAK2kFaoCZc4Fq7KGVoJhqzSrc-RMNznTinHagJAyQ6Bzcr3fO3j3NuoQy86EWlureu3GUKLklFMmqPgHzTKUguUTvfpFt270_e6RnUJJETifstO9qr0Lweu2HLzplP8sEcqpgvK7gvJQwc8Bbhz-oF9gZYiG</recordid><startdate>20151021</startdate><enddate>20151021</enddate><creator>Gheller, C.</creator><creator>Vazza, F.</creator><creator>Favre, J.</creator><creator>Brüggen, M.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20151021</creationdate><title>Properties of cosmological filaments extracted from Eulerian simulations</title><author>Gheller, C. ; Vazza, F. ; Favre, J. ; Brüggen, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-da80698170bb7bb00f73b1a9178564b2d3b641fae4c8154ed84ea453d06772103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acceleration</topic><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Construction</topic><topic>Cooling</topic><topic>Cosmic rays</topic><topic>Cosmology</topic><topic>Diffusion rate</topic><topic>Filaments</topic><topic>Simulation</topic><topic>Star &amp; galaxy formation</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gheller, C.</creatorcontrib><creatorcontrib>Vazza, F.</creatorcontrib><creatorcontrib>Favre, J.</creatorcontrib><creatorcontrib>Brüggen, M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gheller, C.</au><au>Vazza, F.</au><au>Favre, J.</au><au>Brüggen, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties of cosmological filaments extracted from Eulerian simulations</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2015-10-21</date><risdate>2015</risdate><volume>453</volume><issue>2</issue><spage>1164</spage><epage>1185</epage><pages>1164-1185</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>Using a new parallel algorithm implemented within the VisIt framework, we analysed large cosmological grid simulations to study the properties of baryons in filaments. The procedure allows us to build large catalogues with up to ∼3 × 104 filaments per simulated volume and to investigate the properties of cosmic filaments for very large volumes at high resolution (up to 3003 Mpc3 simulated with 20483 cells). We determined scaling relations for the mass, volume, length and temperature of filaments and compared them to those of galaxy clusters. The longest filaments have a total length of about 200 Mpc with a mass of several 1015 M⊙. We also investigated the effects of different gas physics. Radiative cooling significantly modifies the thermal properties of the warm-hot-intergalactic medium of filaments, mainly by lowering their mean temperature via line cooling. On the other hand, powerful feedback from active galactic nuclei in surrounding haloes can heat up the gas in filaments. The impact of shock-accelerated cosmic rays from diffusive shock acceleration on filaments is small and the ratio between cosmic ray and gas pressure within filaments is of the order of ∼10–20 per cent.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stv1646</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2015-10, Vol.453 (2), p.1164-1185
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_1753534636
source Oxford Journals Open Access Collection
subjects Acceleration
Algorithms
Computer simulation
Construction
Cooling
Cosmic rays
Cosmology
Diffusion rate
Filaments
Simulation
Star & galaxy formation
Thermal properties
title Properties of cosmological filaments extracted from Eulerian simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A44%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20of%20cosmological%20filaments%20extracted%20from%20Eulerian%20simulations&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Gheller,%20C.&rft.date=2015-10-21&rft.volume=453&rft.issue=2&rft.spage=1164&rft.epage=1185&rft.pages=1164-1185&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stv1646&rft_dat=%3Cproquest_TOX%3E1753534636%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1717310550&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stv1646&rfr_iscdi=true