FRET-based genetically-encoded sensors for quantitative monitoring of metabolites
Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critic...
Gespeichert in:
Veröffentlicht in: | Biotechnology letters 2015-10, Vol.37 (10), p.1919-1928 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1928 |
---|---|
container_issue | 10 |
container_start_page | 1919 |
container_title | Biotechnology letters |
container_volume | 37 |
creator | Mohsin, Mohd Ahmad, Altaf Iqbal, Muhammad |
description | Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critical for functional understanding of organisms. Various spectrometry techniques are used for monitoring ions and metabolites, although their temporal and spatial resolutions are limited. Discovery of the fluorescent proteins and their variants has revolutionized cell biology. Therefore, novel tools and methods targeting sub-cellular compartments need to be deployed in specific cells and targeted to sub-cellular compartments in order to quantify the target-molecule dynamics directly. We require tools that can measure cellular activities and protein dynamics with sub-cellular resolution. Biosensors based on fluorescence resonance energy transfer (FRET) are genetically encoded and hence can specifically target sub-cellular organelles by fusion to proteins or targetted sequences. Since last decade, FRET-based genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of cellular physiology. This review, describing the design and principles of sensors, presents a database of sensors for different analytes/processes, and illustrate examples of application in quantitative live cell imaging. |
doi_str_mv | 10.1007/s10529-015-1873-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753533460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753533460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-b396ce8241f5d356bb3ccfa1701845bd73a030f5d3489ba16214388befa9e6c23</originalsourceid><addsrcrecordid>eNqNkk1rFTEUhoNY7LX6A9zogBs3sTn5zlJKq0JBWtt1SDKZS8rM5DaZKfTfO8NUERfqKiF5zntyeILQGyAfgRB1WoEIajABgUErhuUztAOxbpSSz9GOAAcsuKHH6GWtd4QQo4h6gY6pBM0lYTt0dXF9foO9q7Ft9nGMUwqu7x9xHENul7Max5pLbbpcmvvZjVOa3JQeYjPkMU25pHHf5K4Z4uR87tMU6yt01Lm-xtdP6wm6vTi_OfuCL799_nr26RIHweiEPTMyRE05dKJlQnrPQugcKLI8TfhWMUcYWe-4Nt6BpMCZ1j52zkQZKDtBH7bcQ8n3c6yTHVINse_dGPNcLSjBBGPrmP9GKQUFjKn_QAEE51rIBX3_B3qX5zIuM68U0cYIEAsFGxVKrrXEzh5KGlx5tEDsatFuFu1i0a4W7Zr89il59kNsf1X81LYAdAPqYTUQy2-t_5L6bivqXLZuX1K1t98pAbn8C-BGA_sBJuSvBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1710899515</pqid></control><display><type>article</type><title>FRET-based genetically-encoded sensors for quantitative monitoring of metabolites</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Mohsin, Mohd ; Ahmad, Altaf ; Iqbal, Muhammad</creator><creatorcontrib>Mohsin, Mohd ; Ahmad, Altaf ; Iqbal, Muhammad</creatorcontrib><description>Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critical for functional understanding of organisms. Various spectrometry techniques are used for monitoring ions and metabolites, although their temporal and spatial resolutions are limited. Discovery of the fluorescent proteins and their variants has revolutionized cell biology. Therefore, novel tools and methods targeting sub-cellular compartments need to be deployed in specific cells and targeted to sub-cellular compartments in order to quantify the target-molecule dynamics directly. We require tools that can measure cellular activities and protein dynamics with sub-cellular resolution. Biosensors based on fluorescence resonance energy transfer (FRET) are genetically encoded and hence can specifically target sub-cellular organelles by fusion to proteins or targetted sequences. Since last decade, FRET-based genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of cellular physiology. This review, describing the design and principles of sensors, presents a database of sensors for different analytes/processes, and illustrate examples of application in quantitative live cell imaging.</description><identifier>ISSN: 0141-5492</identifier><identifier>EISSN: 1573-6776</identifier><identifier>DOI: 10.1007/s10529-015-1873-6</identifier><identifier>PMID: 26184603</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applied Microbiology ; Biochemistry ; Biomedical and Life Sciences ; Biosensing Techniques - methods ; Biosensors ; Biotechnology ; Cellular ; Dynamics ; Energy transfer ; Fluorescence ; Fluorescence Resonance Energy Transfer - methods ; fluorescent proteins ; Fretting ; Genetic engineering ; genomics ; image analysis ; Ions ; Life Sciences ; Luminescent Proteins - analysis ; Luminescent Proteins - genetics ; Metabolic Flux Analysis - methods ; Metabolites ; metabolomics ; Microbiology ; Monitoring ; organelles ; physiology ; Proteins ; proteomics ; reactive oxygen species ; Recombinant Fusion Proteins - analysis ; Recombinant Fusion Proteins - genetics ; Review ; second messengers ; Sensors ; Spectrometry ; spectroscopy</subject><ispartof>Biotechnology letters, 2015-10, Vol.37 (10), p.1919-1928</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-b396ce8241f5d356bb3ccfa1701845bd73a030f5d3489ba16214388befa9e6c23</citedby><cites>FETCH-LOGICAL-c532t-b396ce8241f5d356bb3ccfa1701845bd73a030f5d3489ba16214388befa9e6c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10529-015-1873-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10529-015-1873-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26184603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohsin, Mohd</creatorcontrib><creatorcontrib>Ahmad, Altaf</creatorcontrib><creatorcontrib>Iqbal, Muhammad</creatorcontrib><title>FRET-based genetically-encoded sensors for quantitative monitoring of metabolites</title><title>Biotechnology letters</title><addtitle>Biotechnol Lett</addtitle><addtitle>Biotechnol Lett</addtitle><description>Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critical for functional understanding of organisms. Various spectrometry techniques are used for monitoring ions and metabolites, although their temporal and spatial resolutions are limited. Discovery of the fluorescent proteins and their variants has revolutionized cell biology. Therefore, novel tools and methods targeting sub-cellular compartments need to be deployed in specific cells and targeted to sub-cellular compartments in order to quantify the target-molecule dynamics directly. We require tools that can measure cellular activities and protein dynamics with sub-cellular resolution. Biosensors based on fluorescence resonance energy transfer (FRET) are genetically encoded and hence can specifically target sub-cellular organelles by fusion to proteins or targetted sequences. Since last decade, FRET-based genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of cellular physiology. This review, describing the design and principles of sensors, presents a database of sensors for different analytes/processes, and illustrate examples of application in quantitative live cell imaging.</description><subject>Applied Microbiology</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Cellular</subject><subject>Dynamics</subject><subject>Energy transfer</subject><subject>Fluorescence</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>fluorescent proteins</subject><subject>Fretting</subject><subject>Genetic engineering</subject><subject>genomics</subject><subject>image analysis</subject><subject>Ions</subject><subject>Life Sciences</subject><subject>Luminescent Proteins - analysis</subject><subject>Luminescent Proteins - genetics</subject><subject>Metabolic Flux Analysis - methods</subject><subject>Metabolites</subject><subject>metabolomics</subject><subject>Microbiology</subject><subject>Monitoring</subject><subject>organelles</subject><subject>physiology</subject><subject>Proteins</subject><subject>proteomics</subject><subject>reactive oxygen species</subject><subject>Recombinant Fusion Proteins - analysis</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Review</subject><subject>second messengers</subject><subject>Sensors</subject><subject>Spectrometry</subject><subject>spectroscopy</subject><issn>0141-5492</issn><issn>1573-6776</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkk1rFTEUhoNY7LX6A9zogBs3sTn5zlJKq0JBWtt1SDKZS8rM5DaZKfTfO8NUERfqKiF5zntyeILQGyAfgRB1WoEIajABgUErhuUztAOxbpSSz9GOAAcsuKHH6GWtd4QQo4h6gY6pBM0lYTt0dXF9foO9q7Ft9nGMUwqu7x9xHENul7Max5pLbbpcmvvZjVOa3JQeYjPkMU25pHHf5K4Z4uR87tMU6yt01Lm-xtdP6wm6vTi_OfuCL799_nr26RIHweiEPTMyRE05dKJlQnrPQugcKLI8TfhWMUcYWe-4Nt6BpMCZ1j52zkQZKDtBH7bcQ8n3c6yTHVINse_dGPNcLSjBBGPrmP9GKQUFjKn_QAEE51rIBX3_B3qX5zIuM68U0cYIEAsFGxVKrrXEzh5KGlx5tEDsatFuFu1i0a4W7Zr89il59kNsf1X81LYAdAPqYTUQy2-t_5L6bivqXLZuX1K1t98pAbn8C-BGA_sBJuSvBQ</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Mohsin, Mohd</creator><creator>Ahmad, Altaf</creator><creator>Iqbal, Muhammad</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>RC3</scope></search><sort><creationdate>20151001</creationdate><title>FRET-based genetically-encoded sensors for quantitative monitoring of metabolites</title><author>Mohsin, Mohd ; Ahmad, Altaf ; Iqbal, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-b396ce8241f5d356bb3ccfa1701845bd73a030f5d3489ba16214388befa9e6c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied Microbiology</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Cellular</topic><topic>Dynamics</topic><topic>Energy transfer</topic><topic>Fluorescence</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>fluorescent proteins</topic><topic>Fretting</topic><topic>Genetic engineering</topic><topic>genomics</topic><topic>image analysis</topic><topic>Ions</topic><topic>Life Sciences</topic><topic>Luminescent Proteins - analysis</topic><topic>Luminescent Proteins - genetics</topic><topic>Metabolic Flux Analysis - methods</topic><topic>Metabolites</topic><topic>metabolomics</topic><topic>Microbiology</topic><topic>Monitoring</topic><topic>organelles</topic><topic>physiology</topic><topic>Proteins</topic><topic>proteomics</topic><topic>reactive oxygen species</topic><topic>Recombinant Fusion Proteins - analysis</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Review</topic><topic>second messengers</topic><topic>Sensors</topic><topic>Spectrometry</topic><topic>spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohsin, Mohd</creatorcontrib><creatorcontrib>Ahmad, Altaf</creatorcontrib><creatorcontrib>Iqbal, Muhammad</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Biotechnology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohsin, Mohd</au><au>Ahmad, Altaf</au><au>Iqbal, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FRET-based genetically-encoded sensors for quantitative monitoring of metabolites</atitle><jtitle>Biotechnology letters</jtitle><stitle>Biotechnol Lett</stitle><addtitle>Biotechnol Lett</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>37</volume><issue>10</issue><spage>1919</spage><epage>1928</epage><pages>1919-1928</pages><issn>0141-5492</issn><eissn>1573-6776</eissn><abstract>Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critical for functional understanding of organisms. Various spectrometry techniques are used for monitoring ions and metabolites, although their temporal and spatial resolutions are limited. Discovery of the fluorescent proteins and their variants has revolutionized cell biology. Therefore, novel tools and methods targeting sub-cellular compartments need to be deployed in specific cells and targeted to sub-cellular compartments in order to quantify the target-molecule dynamics directly. We require tools that can measure cellular activities and protein dynamics with sub-cellular resolution. Biosensors based on fluorescence resonance energy transfer (FRET) are genetically encoded and hence can specifically target sub-cellular organelles by fusion to proteins or targetted sequences. Since last decade, FRET-based genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of cellular physiology. This review, describing the design and principles of sensors, presents a database of sensors for different analytes/processes, and illustrate examples of application in quantitative live cell imaging.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>26184603</pmid><doi>10.1007/s10529-015-1873-6</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-5492 |
ispartof | Biotechnology letters, 2015-10, Vol.37 (10), p.1919-1928 |
issn | 0141-5492 1573-6776 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753533460 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Applied Microbiology Biochemistry Biomedical and Life Sciences Biosensing Techniques - methods Biosensors Biotechnology Cellular Dynamics Energy transfer Fluorescence Fluorescence Resonance Energy Transfer - methods fluorescent proteins Fretting Genetic engineering genomics image analysis Ions Life Sciences Luminescent Proteins - analysis Luminescent Proteins - genetics Metabolic Flux Analysis - methods Metabolites metabolomics Microbiology Monitoring organelles physiology Proteins proteomics reactive oxygen species Recombinant Fusion Proteins - analysis Recombinant Fusion Proteins - genetics Review second messengers Sensors Spectrometry spectroscopy |
title | FRET-based genetically-encoded sensors for quantitative monitoring of metabolites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A41%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FRET-based%20genetically-encoded%20sensors%20for%20quantitative%20monitoring%20of%20metabolites&rft.jtitle=Biotechnology%20letters&rft.au=Mohsin,%20Mohd&rft.date=2015-10-01&rft.volume=37&rft.issue=10&rft.spage=1919&rft.epage=1928&rft.pages=1919-1928&rft.issn=0141-5492&rft.eissn=1573-6776&rft_id=info:doi/10.1007/s10529-015-1873-6&rft_dat=%3Cproquest_cross%3E1753533460%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1710899515&rft_id=info:pmid/26184603&rfr_iscdi=true |