Designable Luminescence with Quantum Dot-Silver Plasmon Coupler
We explore a strongly interacting QDs/Ag plasmonic coupling structure that enables multiple approaches to manipulate light emission from QDs. Group II–VI semiconductor QDs with unique surface states (SSs) impressively modify the plasmonic character of the contiguous Ag nanostructures whereby the loc...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2014-08, Vol.10 (15), p.3099-3109 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3109 |
---|---|
container_issue | 15 |
container_start_page | 3099 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 10 |
creator | Hu, Lian Wu, Huizhen Zhang, Bingpo Du, Lingxiao Xu, Tianning Chen, Yongyue Zhang, Yong |
description | We explore a strongly interacting QDs/Ag plasmonic coupling structure that enables multiple approaches to manipulate light emission from QDs. Group II–VI semiconductor QDs with unique surface states (SSs) impressively modify the plasmonic character of the contiguous Ag nanostructures whereby the localized plasmons (LPs) in the Ag nanostructures can effectively extract the non‐radiative SSs of the QDs to radiatively emit via SS–LP resonance. The SS–LP coupling is demonstrated to be readily tunable through surface‐state engineering both during QD synthesis and in the post‐synthesis stage. The combination of surface‐state engineering and band‐tailoring engineering allows us to precisely control the luminescence color of the QDs and enables the realization of white‐light emission with single‐size QDs. Being a versatile metal, the Ag in our optical device functions in multiple ways: as a support for the LPs, for optical reflection, and for electrical conduction. Two application examples of the QDs/Ag plasmon coupler for optical devices are given, an Ag microcavity + plasmon‐coupling structure and a new QD light‐emitting diode. The new QDs/Ag plasmon coupler opens exciting possibilities in developing novel light sources and biomarker detectors.
A strongly interacting QDs‐Ag plasmon coupler is explored where Ag plays three roles, namely that of support for localized plasmons, the role of mirror, and that of electrode. White‐light sources are realized by tuning the surface states of the QDs both during and after the synthesis stage. |
doi_str_mv | 10.1002/smll.201400094 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753532129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3392643321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5474-5e1a2c6867185da4f1b990b2a52f456df551fc277d74626fc8e78065075b44c33</originalsourceid><addsrcrecordid>eNqFkblPwzAUxi0E4l4ZUSQWlhQ_n_GEUAsFKVziGi0ndSDgJMVOOP57UhUqxMLi5-H3fe_4ENoBPACMyUGonBsQDAxjrNgSWgcBNBYJUcuLP-A1tBHCM8YUCJOraK1_AShj6-hwZEP5WJvM2SjtqrK2Ibd1bqP3sn2KrjtTt10VjZo2vindm_XRlTOhaupo2HRTZ_0WWimMC3b7u26iu5Pj2-FpnF6Oz4ZHaZxzJlnMLRiSi0RISPjEsAIypXBGDCcF42JScA5FTqScSCaIKPLEygQLjiXPGMsp3UT7c9-pb147G1pdlf2kzpnaNl3QIDnllABR_6NcSKz69rxH9_6gz03n636RnuIATCVkRg3mVO6bELwt9NSXlfGfGrCepaBnKehFCr1g99u2yyo7WeA_Z-8BNQfeS2c__7HTN-dp-ts8nmvL0NqPhdb4Fy0klVw_XIz1w4m4VvdkrMf0C74koCI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551149825</pqid></control><display><type>article</type><title>Designable Luminescence with Quantum Dot-Silver Plasmon Coupler</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hu, Lian ; Wu, Huizhen ; Zhang, Bingpo ; Du, Lingxiao ; Xu, Tianning ; Chen, Yongyue ; Zhang, Yong</creator><creatorcontrib>Hu, Lian ; Wu, Huizhen ; Zhang, Bingpo ; Du, Lingxiao ; Xu, Tianning ; Chen, Yongyue ; Zhang, Yong</creatorcontrib><description>We explore a strongly interacting QDs/Ag plasmonic coupling structure that enables multiple approaches to manipulate light emission from QDs. Group II–VI semiconductor QDs with unique surface states (SSs) impressively modify the plasmonic character of the contiguous Ag nanostructures whereby the localized plasmons (LPs) in the Ag nanostructures can effectively extract the non‐radiative SSs of the QDs to radiatively emit via SS–LP resonance. The SS–LP coupling is demonstrated to be readily tunable through surface‐state engineering both during QD synthesis and in the post‐synthesis stage. The combination of surface‐state engineering and band‐tailoring engineering allows us to precisely control the luminescence color of the QDs and enables the realization of white‐light emission with single‐size QDs. Being a versatile metal, the Ag in our optical device functions in multiple ways: as a support for the LPs, for optical reflection, and for electrical conduction. Two application examples of the QDs/Ag plasmon coupler for optical devices are given, an Ag microcavity + plasmon‐coupling structure and a new QD light‐emitting diode. The new QDs/Ag plasmon coupler opens exciting possibilities in developing novel light sources and biomarker detectors.
A strongly interacting QDs‐Ag plasmon coupler is explored where Ag plays three roles, namely that of support for localized plasmons, the role of mirror, and that of electrode. White‐light sources are realized by tuning the surface states of the QDs both during and after the synthesis stage.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201400094</identifier><identifier>PMID: 24711344</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Devices ; Diodes ; Equipment Design ; Equipment Failure Analysis ; II-VI semiconductors ; Joining ; Light ; light-emitting diodes ; Luminescent Measurements - instrumentation ; Materials Testing ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Microcavities ; Nanostructure ; Nanotechnology ; Plasmons ; Quantum Dots ; Scattering, Radiation ; Semiconductors ; Silver ; Silver - chemistry ; structure-property relationships ; Surface Plasmon Resonance - instrumentation ; Surface Properties ; Synthesis</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2014-08, Vol.10 (15), p.3099-3109</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5474-5e1a2c6867185da4f1b990b2a52f456df551fc277d74626fc8e78065075b44c33</citedby><cites>FETCH-LOGICAL-c5474-5e1a2c6867185da4f1b990b2a52f456df551fc277d74626fc8e78065075b44c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201400094$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201400094$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24711344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Lian</creatorcontrib><creatorcontrib>Wu, Huizhen</creatorcontrib><creatorcontrib>Zhang, Bingpo</creatorcontrib><creatorcontrib>Du, Lingxiao</creatorcontrib><creatorcontrib>Xu, Tianning</creatorcontrib><creatorcontrib>Chen, Yongyue</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><title>Designable Luminescence with Quantum Dot-Silver Plasmon Coupler</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>We explore a strongly interacting QDs/Ag plasmonic coupling structure that enables multiple approaches to manipulate light emission from QDs. Group II–VI semiconductor QDs with unique surface states (SSs) impressively modify the plasmonic character of the contiguous Ag nanostructures whereby the localized plasmons (LPs) in the Ag nanostructures can effectively extract the non‐radiative SSs of the QDs to radiatively emit via SS–LP resonance. The SS–LP coupling is demonstrated to be readily tunable through surface‐state engineering both during QD synthesis and in the post‐synthesis stage. The combination of surface‐state engineering and band‐tailoring engineering allows us to precisely control the luminescence color of the QDs and enables the realization of white‐light emission with single‐size QDs. Being a versatile metal, the Ag in our optical device functions in multiple ways: as a support for the LPs, for optical reflection, and for electrical conduction. Two application examples of the QDs/Ag plasmon coupler for optical devices are given, an Ag microcavity + plasmon‐coupling structure and a new QD light‐emitting diode. The new QDs/Ag plasmon coupler opens exciting possibilities in developing novel light sources and biomarker detectors.
A strongly interacting QDs‐Ag plasmon coupler is explored where Ag plays three roles, namely that of support for localized plasmons, the role of mirror, and that of electrode. White‐light sources are realized by tuning the surface states of the QDs both during and after the synthesis stage.</description><subject>Devices</subject><subject>Diodes</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>II-VI semiconductors</subject><subject>Joining</subject><subject>Light</subject><subject>light-emitting diodes</subject><subject>Luminescent Measurements - instrumentation</subject><subject>Materials Testing</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Microcavities</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Plasmons</subject><subject>Quantum Dots</subject><subject>Scattering, Radiation</subject><subject>Semiconductors</subject><subject>Silver</subject><subject>Silver - chemistry</subject><subject>structure-property relationships</subject><subject>Surface Plasmon Resonance - instrumentation</subject><subject>Surface Properties</subject><subject>Synthesis</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkblPwzAUxi0E4l4ZUSQWlhQ_n_GEUAsFKVziGi0ndSDgJMVOOP57UhUqxMLi5-H3fe_4ENoBPACMyUGonBsQDAxjrNgSWgcBNBYJUcuLP-A1tBHCM8YUCJOraK1_AShj6-hwZEP5WJvM2SjtqrK2Ibd1bqP3sn2KrjtTt10VjZo2vindm_XRlTOhaupo2HRTZ_0WWimMC3b7u26iu5Pj2-FpnF6Oz4ZHaZxzJlnMLRiSi0RISPjEsAIypXBGDCcF42JScA5FTqScSCaIKPLEygQLjiXPGMsp3UT7c9-pb147G1pdlf2kzpnaNl3QIDnllABR_6NcSKz69rxH9_6gz03n636RnuIATCVkRg3mVO6bELwt9NSXlfGfGrCepaBnKehFCr1g99u2yyo7WeA_Z-8BNQfeS2c__7HTN-dp-ts8nmvL0NqPhdb4Fy0klVw_XIz1w4m4VvdkrMf0C74koCI</recordid><startdate>20140813</startdate><enddate>20140813</enddate><creator>Hu, Lian</creator><creator>Wu, Huizhen</creator><creator>Zhang, Bingpo</creator><creator>Du, Lingxiao</creator><creator>Xu, Tianning</creator><creator>Chen, Yongyue</creator><creator>Zhang, Yong</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140813</creationdate><title>Designable Luminescence with Quantum Dot-Silver Plasmon Coupler</title><author>Hu, Lian ; Wu, Huizhen ; Zhang, Bingpo ; Du, Lingxiao ; Xu, Tianning ; Chen, Yongyue ; Zhang, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5474-5e1a2c6867185da4f1b990b2a52f456df551fc277d74626fc8e78065075b44c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Devices</topic><topic>Diodes</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>II-VI semiconductors</topic><topic>Joining</topic><topic>Light</topic><topic>light-emitting diodes</topic><topic>Luminescent Measurements - instrumentation</topic><topic>Materials Testing</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Microcavities</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Plasmons</topic><topic>Quantum Dots</topic><topic>Scattering, Radiation</topic><topic>Semiconductors</topic><topic>Silver</topic><topic>Silver - chemistry</topic><topic>structure-property relationships</topic><topic>Surface Plasmon Resonance - instrumentation</topic><topic>Surface Properties</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Lian</creatorcontrib><creatorcontrib>Wu, Huizhen</creatorcontrib><creatorcontrib>Zhang, Bingpo</creatorcontrib><creatorcontrib>Du, Lingxiao</creatorcontrib><creatorcontrib>Xu, Tianning</creatorcontrib><creatorcontrib>Chen, Yongyue</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Lian</au><au>Wu, Huizhen</au><au>Zhang, Bingpo</au><au>Du, Lingxiao</au><au>Xu, Tianning</au><au>Chen, Yongyue</au><au>Zhang, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designable Luminescence with Quantum Dot-Silver Plasmon Coupler</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2014-08-13</date><risdate>2014</risdate><volume>10</volume><issue>15</issue><spage>3099</spage><epage>3109</epage><pages>3099-3109</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>We explore a strongly interacting QDs/Ag plasmonic coupling structure that enables multiple approaches to manipulate light emission from QDs. Group II–VI semiconductor QDs with unique surface states (SSs) impressively modify the plasmonic character of the contiguous Ag nanostructures whereby the localized plasmons (LPs) in the Ag nanostructures can effectively extract the non‐radiative SSs of the QDs to radiatively emit via SS–LP resonance. The SS–LP coupling is demonstrated to be readily tunable through surface‐state engineering both during QD synthesis and in the post‐synthesis stage. The combination of surface‐state engineering and band‐tailoring engineering allows us to precisely control the luminescence color of the QDs and enables the realization of white‐light emission with single‐size QDs. Being a versatile metal, the Ag in our optical device functions in multiple ways: as a support for the LPs, for optical reflection, and for electrical conduction. Two application examples of the QDs/Ag plasmon coupler for optical devices are given, an Ag microcavity + plasmon‐coupling structure and a new QD light‐emitting diode. The new QDs/Ag plasmon coupler opens exciting possibilities in developing novel light sources and biomarker detectors.
A strongly interacting QDs‐Ag plasmon coupler is explored where Ag plays three roles, namely that of support for localized plasmons, the role of mirror, and that of electrode. White‐light sources are realized by tuning the surface states of the QDs both during and after the synthesis stage.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>24711344</pmid><doi>10.1002/smll.201400094</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2014-08, Vol.10 (15), p.3099-3109 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753532129 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Devices Diodes Equipment Design Equipment Failure Analysis II-VI semiconductors Joining Light light-emitting diodes Luminescent Measurements - instrumentation Materials Testing Metal Nanoparticles - chemistry Metal Nanoparticles - ultrastructure Microcavities Nanostructure Nanotechnology Plasmons Quantum Dots Scattering, Radiation Semiconductors Silver Silver - chemistry structure-property relationships Surface Plasmon Resonance - instrumentation Surface Properties Synthesis |
title | Designable Luminescence with Quantum Dot-Silver Plasmon Coupler |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A51%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designable%20Luminescence%20with%20Quantum%20Dot-Silver%20Plasmon%20Coupler&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Hu,%20Lian&rft.date=2014-08-13&rft.volume=10&rft.issue=15&rft.spage=3099&rft.epage=3109&rft.pages=3099-3109&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201400094&rft_dat=%3Cproquest_cross%3E3392643321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551149825&rft_id=info:pmid/24711344&rfr_iscdi=true |