Dugdale model for three equal collinear straight cracks: An analytical approach
•To provide analytical solution of multiple cracks under general yielding conditions.•Load bearing capacity of an infinite plate containing three equal collinear straight.•Stress intensity factor and crack tip opening displacement are evaluated theoretically and numerically. In the paper, solution o...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied fracture mechanics 2015-08, Vol.78, p.40-50 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50 |
---|---|
container_issue | |
container_start_page | 40 |
container_title | Theoretical and applied fracture mechanics |
container_volume | 78 |
creator | Hasan, S. Akhtar, Naved |
description | •To provide analytical solution of multiple cracks under general yielding conditions.•Load bearing capacity of an infinite plate containing three equal collinear straight.•Stress intensity factor and crack tip opening displacement are evaluated theoretically and numerically.
In the paper, solution of three collinear equal straight cracks has been investigated on the basis of Dugdale’s hypothesis. These cracks damage an infinite isotropic elastic perfectly plastic plate. Crack tips are very sensitive about loads applied at the infinite boundary of the plate. Each crack tip opens in mode-I type deformation on the application of repeated loads at the boundary of the plate, as a result yield zones develop at each crack tip. To stop further opening of cracks, the rims of the developed yield zones are subjected to yield stress distribution. Muskhelisvili’s complex variable method is used to derive analytical expressions for complex potential function, stress intensity factor (SIF), components of displacement and crack tip opening displacement (CTOD) at each crack tip. Some of the analytical expressions are validated with previously published work. Numerical results are obtained for load bearing capacity, yield zone length and CTOD. These results are analyzed and reported graphically for different cracks lengths. |
doi_str_mv | 10.1016/j.tafmec.2015.04.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753531677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167844215201589</els_id><sourcerecordid>1753531677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-36eb8afca85757204b511826a3fe94576f4521998562ec753e2abb4481a88ba3</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEuXxDxg8siTYjh07DEioPKVKXbpbN-5N6-ImxU6R-u9xVWamu3znXJ2PkDvOSs54_bApR-i26ErBuCqZLBkTZ2TCjRaFritzTiYZ04WRUlySq5Q2jHHNm2pC5i_71RIC0u2wxEC7IdJxHREpfu8hUDeE4HuESNMYwa_WI3UR3Fd6pM89hR7CYfQug7DbxQHc-oZcdBAS3v7da7J4e11MP4rZ_P1z-jwrnGTNWFQ1tgY6B0ZppQWTreLciBqqDhupdN1JJXjTGFULdFpVKKBtpTQcjGmhuib3p9r89XuPabRbnxyGAD0O-2R5jqgqb9YZlSfUxSGliJ3dRb-FeLCc2aM-u7EnffaozzJps74cezrFMK_48Rhtch57h0sf0Y12Ofj_C34B7DR6Dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753531677</pqid></control><display><type>article</type><title>Dugdale model for three equal collinear straight cracks: An analytical approach</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hasan, S. ; Akhtar, Naved</creator><creatorcontrib>Hasan, S. ; Akhtar, Naved</creatorcontrib><description>•To provide analytical solution of multiple cracks under general yielding conditions.•Load bearing capacity of an infinite plate containing three equal collinear straight.•Stress intensity factor and crack tip opening displacement are evaluated theoretically and numerically.
In the paper, solution of three collinear equal straight cracks has been investigated on the basis of Dugdale’s hypothesis. These cracks damage an infinite isotropic elastic perfectly plastic plate. Crack tips are very sensitive about loads applied at the infinite boundary of the plate. Each crack tip opens in mode-I type deformation on the application of repeated loads at the boundary of the plate, as a result yield zones develop at each crack tip. To stop further opening of cracks, the rims of the developed yield zones are subjected to yield stress distribution. Muskhelisvili’s complex variable method is used to derive analytical expressions for complex potential function, stress intensity factor (SIF), components of displacement and crack tip opening displacement (CTOD) at each crack tip. Some of the analytical expressions are validated with previously published work. Numerical results are obtained for load bearing capacity, yield zone length and CTOD. These results are analyzed and reported graphically for different cracks lengths.</description><identifier>ISSN: 0167-8442</identifier><identifier>EISSN: 1872-7638</identifier><identifier>DOI: 10.1016/j.tafmec.2015.04.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Boundaries ; Crack opening displacement ; Crack tip opening displacement ; Crack tips ; Displacement ; Dugdale model ; Exact solutions ; Fracture mechanics ; Mathematical analysis ; Mathematical models ; Multiple crack ; Stress intensity factor</subject><ispartof>Theoretical and applied fracture mechanics, 2015-08, Vol.78, p.40-50</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-36eb8afca85757204b511826a3fe94576f4521998562ec753e2abb4481a88ba3</citedby><cites>FETCH-LOGICAL-c409t-36eb8afca85757204b511826a3fe94576f4521998562ec753e2abb4481a88ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tafmec.2015.04.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Hasan, S.</creatorcontrib><creatorcontrib>Akhtar, Naved</creatorcontrib><title>Dugdale model for three equal collinear straight cracks: An analytical approach</title><title>Theoretical and applied fracture mechanics</title><description>•To provide analytical solution of multiple cracks under general yielding conditions.•Load bearing capacity of an infinite plate containing three equal collinear straight.•Stress intensity factor and crack tip opening displacement are evaluated theoretically and numerically.
In the paper, solution of three collinear equal straight cracks has been investigated on the basis of Dugdale’s hypothesis. These cracks damage an infinite isotropic elastic perfectly plastic plate. Crack tips are very sensitive about loads applied at the infinite boundary of the plate. Each crack tip opens in mode-I type deformation on the application of repeated loads at the boundary of the plate, as a result yield zones develop at each crack tip. To stop further opening of cracks, the rims of the developed yield zones are subjected to yield stress distribution. Muskhelisvili’s complex variable method is used to derive analytical expressions for complex potential function, stress intensity factor (SIF), components of displacement and crack tip opening displacement (CTOD) at each crack tip. Some of the analytical expressions are validated with previously published work. Numerical results are obtained for load bearing capacity, yield zone length and CTOD. These results are analyzed and reported graphically for different cracks lengths.</description><subject>Boundaries</subject><subject>Crack opening displacement</subject><subject>Crack tip opening displacement</subject><subject>Crack tips</subject><subject>Displacement</subject><subject>Dugdale model</subject><subject>Exact solutions</subject><subject>Fracture mechanics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multiple crack</subject><subject>Stress intensity factor</subject><issn>0167-8442</issn><issn>1872-7638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEuXxDxg8siTYjh07DEioPKVKXbpbN-5N6-ImxU6R-u9xVWamu3znXJ2PkDvOSs54_bApR-i26ErBuCqZLBkTZ2TCjRaFritzTiYZ04WRUlySq5Q2jHHNm2pC5i_71RIC0u2wxEC7IdJxHREpfu8hUDeE4HuESNMYwa_WI3UR3Fd6pM89hR7CYfQug7DbxQHc-oZcdBAS3v7da7J4e11MP4rZ_P1z-jwrnGTNWFQ1tgY6B0ZppQWTreLciBqqDhupdN1JJXjTGFULdFpVKKBtpTQcjGmhuib3p9r89XuPabRbnxyGAD0O-2R5jqgqb9YZlSfUxSGliJ3dRb-FeLCc2aM-u7EnffaozzJps74cezrFMK_48Rhtch57h0sf0Y12Ofj_C34B7DR6Dg</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Hasan, S.</creator><creator>Akhtar, Naved</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20150801</creationdate><title>Dugdale model for three equal collinear straight cracks: An analytical approach</title><author>Hasan, S. ; Akhtar, Naved</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-36eb8afca85757204b511826a3fe94576f4521998562ec753e2abb4481a88ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundaries</topic><topic>Crack opening displacement</topic><topic>Crack tip opening displacement</topic><topic>Crack tips</topic><topic>Displacement</topic><topic>Dugdale model</topic><topic>Exact solutions</topic><topic>Fracture mechanics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multiple crack</topic><topic>Stress intensity factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasan, S.</creatorcontrib><creatorcontrib>Akhtar, Naved</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Theoretical and applied fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasan, S.</au><au>Akhtar, Naved</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dugdale model for three equal collinear straight cracks: An analytical approach</atitle><jtitle>Theoretical and applied fracture mechanics</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>78</volume><spage>40</spage><epage>50</epage><pages>40-50</pages><issn>0167-8442</issn><eissn>1872-7638</eissn><abstract>•To provide analytical solution of multiple cracks under general yielding conditions.•Load bearing capacity of an infinite plate containing three equal collinear straight.•Stress intensity factor and crack tip opening displacement are evaluated theoretically and numerically.
In the paper, solution of three collinear equal straight cracks has been investigated on the basis of Dugdale’s hypothesis. These cracks damage an infinite isotropic elastic perfectly plastic plate. Crack tips are very sensitive about loads applied at the infinite boundary of the plate. Each crack tip opens in mode-I type deformation on the application of repeated loads at the boundary of the plate, as a result yield zones develop at each crack tip. To stop further opening of cracks, the rims of the developed yield zones are subjected to yield stress distribution. Muskhelisvili’s complex variable method is used to derive analytical expressions for complex potential function, stress intensity factor (SIF), components of displacement and crack tip opening displacement (CTOD) at each crack tip. Some of the analytical expressions are validated with previously published work. Numerical results are obtained for load bearing capacity, yield zone length and CTOD. These results are analyzed and reported graphically for different cracks lengths.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.tafmec.2015.04.002</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8442 |
ispartof | Theoretical and applied fracture mechanics, 2015-08, Vol.78, p.40-50 |
issn | 0167-8442 1872-7638 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753531677 |
source | Access via ScienceDirect (Elsevier) |
subjects | Boundaries Crack opening displacement Crack tip opening displacement Crack tips Displacement Dugdale model Exact solutions Fracture mechanics Mathematical analysis Mathematical models Multiple crack Stress intensity factor |
title | Dugdale model for three equal collinear straight cracks: An analytical approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dugdale%20model%20for%20three%20equal%20collinear%20straight%20cracks:%20An%20analytical%20approach&rft.jtitle=Theoretical%20and%20applied%20fracture%20mechanics&rft.au=Hasan,%20S.&rft.date=2015-08-01&rft.volume=78&rft.spage=40&rft.epage=50&rft.pages=40-50&rft.issn=0167-8442&rft.eissn=1872-7638&rft_id=info:doi/10.1016/j.tafmec.2015.04.002&rft_dat=%3Cproquest_cross%3E1753531677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753531677&rft_id=info:pmid/&rft_els_id=S0167844215201589&rfr_iscdi=true |