Propagation of MinCDE waves on free-standing membranes

Summary As a spatial modulator of cytokinesis in Escherichia coli, the Min system cooperates with the nucleoid occlusion mechanism to target the divisome assembly towards mid‐cell. Based on a reaction–diffusion mechanism powered by ATP (adenosine triphosphate) hydrolysis, the Min proteins propagate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2013-12, Vol.15 (12), p.3319-3326
Hauptverfasser: Martos, Ariadna, Petrasek, Zdenek, Schwille, Petra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3326
container_issue 12
container_start_page 3319
container_title Environmental microbiology
container_volume 15
creator Martos, Ariadna
Petrasek, Zdenek
Schwille, Petra
description Summary As a spatial modulator of cytokinesis in Escherichia coli, the Min system cooperates with the nucleoid occlusion mechanism to target the divisome assembly towards mid‐cell. Based on a reaction–diffusion mechanism powered by ATP (adenosine triphosphate) hydrolysis, the Min proteins propagate in waves on the cell membrane, resulting in oscillations between the cell poles, thus preventing the formation of the division ring everywhere but in the cell centre. The dynamic behaviour of Min proteins has been successfully reconstructed in vitro on supported lipid bilayers (SLBs), reproducing many of the features observed in the cell. However, there has been a marked discrepancy between the speed of propagation of Min protein waves in vitro, compared with the cellular system. A very plausible explanation is the different mobility of proteins on model membranes, compared with the inner membrane of bacteria. To quantitatively demonstrate how membrane diffusion influences Min wave propagation, we compared Min waves on SLBs with free‐standing giant unilamellar vesicles (GUV) membranes which display higher fluidity. Intriguingly, the propagation velocity and wavelength on GUVs are three times higher than those reported on supported bilayers, but the wave period is conserved. This suggests that the shorter spatial period of the patterns in vivo might indeed be primarily explained by lower diffusion coefficients of proteins on the bacterial inner membrane.
doi_str_mv 10.1111/1462-2920.12295
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753528174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3144135851</sourcerecordid><originalsourceid>FETCH-LOGICAL-i4525-58f4cea95162cbd19416e9c0f2f4a8db980a194a4248ce0f8f163909dd3305c93</originalsourceid><addsrcrecordid>eNqFkUtPAyEUhYnRaK2u3ZlJjImbUS4DDCxNrdWkVhe-doTOQEOdRx1aq_9e-rAmbmTD5fIdHucgdAT4HMK4AMpJTCQJS0Ik20KtTWd7UwPZQ_vejzGGNEnxLtojFEDwVLYQf2jqiR7pqaurqLbRnas6V91orj-Mj0LLNsbEfqqr3FWjqDTlsNGV8Qdox-rCm8P13EZP193Hzk3cv-_ddi77saOMsJgJSzOjJQNOsmEOkgI3MsOWWKpFPpQC69DUlFCRGWyFBZ5ILPM8STDLZNJGZ6tzJ039PjN-qkrnM1MU4RH1zCtIWcKIgJT-j1LOIJWAIaAnf9BxPWuq8JEFRWnwiZNAHa-p2bA0uZo0rtTNl_oxLwCna0D7TBc2OJM5_8sJTCD4HTi24uauMF-bfcBqkeHiSqIWiallhqp7d7ssgi5e6Zyfms-NTjdviocgmXoZ9NSAPb_2On2qRPINrwmYWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464401762</pqid></control><display><type>article</type><title>Propagation of MinCDE waves on free-standing membranes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Martos, Ariadna ; Petrasek, Zdenek ; Schwille, Petra</creator><creatorcontrib>Martos, Ariadna ; Petrasek, Zdenek ; Schwille, Petra</creatorcontrib><description>Summary As a spatial modulator of cytokinesis in Escherichia coli, the Min system cooperates with the nucleoid occlusion mechanism to target the divisome assembly towards mid‐cell. Based on a reaction–diffusion mechanism powered by ATP (adenosine triphosphate) hydrolysis, the Min proteins propagate in waves on the cell membrane, resulting in oscillations between the cell poles, thus preventing the formation of the division ring everywhere but in the cell centre. The dynamic behaviour of Min proteins has been successfully reconstructed in vitro on supported lipid bilayers (SLBs), reproducing many of the features observed in the cell. However, there has been a marked discrepancy between the speed of propagation of Min protein waves in vitro, compared with the cellular system. A very plausible explanation is the different mobility of proteins on model membranes, compared with the inner membrane of bacteria. To quantitatively demonstrate how membrane diffusion influences Min wave propagation, we compared Min waves on SLBs with free‐standing giant unilamellar vesicles (GUV) membranes which display higher fluidity. Intriguingly, the propagation velocity and wavelength on GUVs are three times higher than those reported on supported bilayers, but the wave period is conserved. This suggests that the shorter spatial period of the patterns in vivo might indeed be primarily explained by lower diffusion coefficients of proteins on the bacterial inner membrane.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.12295</identifier><identifier>PMID: 24118679</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Adenosine Triphosphatases - metabolism ; Adenosine Triphosphate - metabolism ; Animal, plant and microbial ecology ; Biological and medical sciences ; Cell Cycle Proteins - metabolism ; Cell Membrane - metabolism ; Diffusion ; Escherichia coli ; Escherichia coli - cytology ; Escherichia coli - metabolism ; Escherichia coli Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; General aspects ; Lipid Bilayers ; Membrane Proteins - metabolism ; Membranes ; Microbial ecology ; Microscopy, Confocal ; Propagation ; Proteins ; Unilamellar Liposomes</subject><ispartof>Environmental microbiology, 2013-12, Vol.15 (12), p.3319-3326</ispartof><rights>2013 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2013 Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2013 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.12295$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.12295$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28021370$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24118679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martos, Ariadna</creatorcontrib><creatorcontrib>Petrasek, Zdenek</creatorcontrib><creatorcontrib>Schwille, Petra</creatorcontrib><title>Propagation of MinCDE waves on free-standing membranes</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary As a spatial modulator of cytokinesis in Escherichia coli, the Min system cooperates with the nucleoid occlusion mechanism to target the divisome assembly towards mid‐cell. Based on a reaction–diffusion mechanism powered by ATP (adenosine triphosphate) hydrolysis, the Min proteins propagate in waves on the cell membrane, resulting in oscillations between the cell poles, thus preventing the formation of the division ring everywhere but in the cell centre. The dynamic behaviour of Min proteins has been successfully reconstructed in vitro on supported lipid bilayers (SLBs), reproducing many of the features observed in the cell. However, there has been a marked discrepancy between the speed of propagation of Min protein waves in vitro, compared with the cellular system. A very plausible explanation is the different mobility of proteins on model membranes, compared with the inner membrane of bacteria. To quantitatively demonstrate how membrane diffusion influences Min wave propagation, we compared Min waves on SLBs with free‐standing giant unilamellar vesicles (GUV) membranes which display higher fluidity. Intriguingly, the propagation velocity and wavelength on GUVs are three times higher than those reported on supported bilayers, but the wave period is conserved. This suggests that the shorter spatial period of the patterns in vivo might indeed be primarily explained by lower diffusion coefficients of proteins on the bacterial inner membrane.</description><subject>Adenosine Triphosphatases - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Membrane - metabolism</subject><subject>Diffusion</subject><subject>Escherichia coli</subject><subject>Escherichia coli - cytology</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Lipid Bilayers</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes</subject><subject>Microbial ecology</subject><subject>Microscopy, Confocal</subject><subject>Propagation</subject><subject>Proteins</subject><subject>Unilamellar Liposomes</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtPAyEUhYnRaK2u3ZlJjImbUS4DDCxNrdWkVhe-doTOQEOdRx1aq_9e-rAmbmTD5fIdHucgdAT4HMK4AMpJTCQJS0Ik20KtTWd7UwPZQ_vejzGGNEnxLtojFEDwVLYQf2jqiR7pqaurqLbRnas6V91orj-Mj0LLNsbEfqqr3FWjqDTlsNGV8Qdox-rCm8P13EZP193Hzk3cv-_ddi77saOMsJgJSzOjJQNOsmEOkgI3MsOWWKpFPpQC69DUlFCRGWyFBZ5ILPM8STDLZNJGZ6tzJ039PjN-qkrnM1MU4RH1zCtIWcKIgJT-j1LOIJWAIaAnf9BxPWuq8JEFRWnwiZNAHa-p2bA0uZo0rtTNl_oxLwCna0D7TBc2OJM5_8sJTCD4HTi24uauMF-bfcBqkeHiSqIWiallhqp7d7ssgi5e6Zyfms-NTjdviocgmXoZ9NSAPb_2On2qRPINrwmYWA</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Martos, Ariadna</creator><creator>Petrasek, Zdenek</creator><creator>Schwille, Petra</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201312</creationdate><title>Propagation of MinCDE waves on free-standing membranes</title><author>Martos, Ariadna ; Petrasek, Zdenek ; Schwille, Petra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i4525-58f4cea95162cbd19416e9c0f2f4a8db980a194a4248ce0f8f163909dd3305c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine Triphosphatases - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Membrane - metabolism</topic><topic>Diffusion</topic><topic>Escherichia coli</topic><topic>Escherichia coli - cytology</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Lipid Bilayers</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes</topic><topic>Microbial ecology</topic><topic>Microscopy, Confocal</topic><topic>Propagation</topic><topic>Proteins</topic><topic>Unilamellar Liposomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martos, Ariadna</creatorcontrib><creatorcontrib>Petrasek, Zdenek</creatorcontrib><creatorcontrib>Schwille, Petra</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martos, Ariadna</au><au>Petrasek, Zdenek</au><au>Schwille, Petra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propagation of MinCDE waves on free-standing membranes</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2013-12</date><risdate>2013</risdate><volume>15</volume><issue>12</issue><spage>3319</spage><epage>3326</epage><pages>3319-3326</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary As a spatial modulator of cytokinesis in Escherichia coli, the Min system cooperates with the nucleoid occlusion mechanism to target the divisome assembly towards mid‐cell. Based on a reaction–diffusion mechanism powered by ATP (adenosine triphosphate) hydrolysis, the Min proteins propagate in waves on the cell membrane, resulting in oscillations between the cell poles, thus preventing the formation of the division ring everywhere but in the cell centre. The dynamic behaviour of Min proteins has been successfully reconstructed in vitro on supported lipid bilayers (SLBs), reproducing many of the features observed in the cell. However, there has been a marked discrepancy between the speed of propagation of Min protein waves in vitro, compared with the cellular system. A very plausible explanation is the different mobility of proteins on model membranes, compared with the inner membrane of bacteria. To quantitatively demonstrate how membrane diffusion influences Min wave propagation, we compared Min waves on SLBs with free‐standing giant unilamellar vesicles (GUV) membranes which display higher fluidity. Intriguingly, the propagation velocity and wavelength on GUVs are three times higher than those reported on supported bilayers, but the wave period is conserved. This suggests that the shorter spatial period of the patterns in vivo might indeed be primarily explained by lower diffusion coefficients of proteins on the bacterial inner membrane.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>24118679</pmid><doi>10.1111/1462-2920.12295</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2013-12, Vol.15 (12), p.3319-3326
issn 1462-2912
1462-2920
language eng
recordid cdi_proquest_miscellaneous_1753528174
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adenosine Triphosphatases - metabolism
Adenosine Triphosphate - metabolism
Animal, plant and microbial ecology
Biological and medical sciences
Cell Cycle Proteins - metabolism
Cell Membrane - metabolism
Diffusion
Escherichia coli
Escherichia coli - cytology
Escherichia coli - metabolism
Escherichia coli Proteins - metabolism
Fundamental and applied biological sciences. Psychology
General aspects
Lipid Bilayers
Membrane Proteins - metabolism
Membranes
Microbial ecology
Microscopy, Confocal
Propagation
Proteins
Unilamellar Liposomes
title Propagation of MinCDE waves on free-standing membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T11%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propagation%20of%20MinCDE%20waves%20on%20free-standing%20membranes&rft.jtitle=Environmental%20microbiology&rft.au=Martos,%20Ariadna&rft.date=2013-12&rft.volume=15&rft.issue=12&rft.spage=3319&rft.epage=3326&rft.pages=3319-3326&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.12295&rft_dat=%3Cproquest_pubme%3E3144135851%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464401762&rft_id=info:pmid/24118679&rfr_iscdi=true