Some aspects of stabilization and structure of laminar premixed hydrogen-air flames in a microchannel
In the present paper, flame stabilization and structure are investigated numerically for non-adiabatic hydrogen-air flames at different equivalence ratios and inlet velocities. A cylindrical microcombustor in which combustion occurs in the annular region between two concentric tubes is investigated....
Gespeichert in:
Veröffentlicht in: | Applied thermal engineering 2015-08, Vol.87, p.539-546 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 546 |
---|---|
container_issue | |
container_start_page | 539 |
container_title | Applied thermal engineering |
container_volume | 87 |
creator | Jejurkar, Swarup Y. Mishra, D.P. |
description | In the present paper, flame stabilization and structure are investigated numerically for non-adiabatic hydrogen-air flames at different equivalence ratios and inlet velocities. A cylindrical microcombustor in which combustion occurs in the annular region between two concentric tubes is investigated. The inner hollow tube contains static nitrogen gas and this combination acts as a thermal reservoir that stores and recirculates heat to the incoming mixture. Investigations are carried out using detailed numerical model incorporating two-dimensional transport, thermal radiation, multi-step kinetics, and conjugate heat transfer. Flame is sustained by the continuous ignition mechanism activated by an uninterrupted temperature field between gas mixture and wall developing at steady state. Heat losses from flame resulted in a crossover temperature higher than that of the lean-limit and stoichiometric free flames due to slow radical build-up. Thermal diffusion of hydrogen is shown to be responsible for enhancing the burning intensity of leading edge. Diffusion and reaction kinetics at the flame tip result in twin-peaked heat release rate distribution, most prominently for fuel rich flame (ϕ = 1.7).
[Display omitted]
•homogeneous ignition of flame by continuous ignition mechanism.•thermal diffusion of H2 at the leading edge affects flame structure.•twin-peaked heat release profile for rich flame.•unravels role of OH in reaction kinetics of rich flame. |
doi_str_mv | 10.1016/j.applthermaleng.2015.05.053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753524084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431115005098</els_id><sourcerecordid>1753524084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8b196fcb8f3f2b1db8ebf4809122e1ed2b9648ffd1afd5096accafab482e33613</originalsourceid><addsrcrecordid>eNqNUE1LxDAQzUHBdfU_5ODBS2vStN0WvMjiqiB4UM9hmkx2s6RpTVpx_fW2rBdvwoOBeR_MPEKuOEs54-XNPoW-d8MOQwsO_TbNGC9SNkOckAUXRZ3kgvMzch7jnjGeVat8QfC1a5FC7FENkXaGxgEa6-w3DLbzFLyeNmFUwxhwph201kOgfcDWfqGmu4MO3RZ9AjZQM9EYqZ2MtLUqdGoH3qO7IKcGXMTL37kk75v7t_Vj8vzy8LS-e06UKMWQVA2vS6OaygiTNVw3FTYmr1jNsww56qypy7wyRnMwumB1CUqBgSavMhSi5GJJro-5feg-RoyDbG1U6Bx47MYo-aoQRZazKp-kt0fpdGWMAY3sg20hHCRncm5U7uXfRuXcqGQzxGTfHO04vfNpMcioLHqF2oapSqk7-7-gH5R3jUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753524084</pqid></control><display><type>article</type><title>Some aspects of stabilization and structure of laminar premixed hydrogen-air flames in a microchannel</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Jejurkar, Swarup Y. ; Mishra, D.P.</creator><creatorcontrib>Jejurkar, Swarup Y. ; Mishra, D.P.</creatorcontrib><description>In the present paper, flame stabilization and structure are investigated numerically for non-adiabatic hydrogen-air flames at different equivalence ratios and inlet velocities. A cylindrical microcombustor in which combustion occurs in the annular region between two concentric tubes is investigated. The inner hollow tube contains static nitrogen gas and this combination acts as a thermal reservoir that stores and recirculates heat to the incoming mixture. Investigations are carried out using detailed numerical model incorporating two-dimensional transport, thermal radiation, multi-step kinetics, and conjugate heat transfer. Flame is sustained by the continuous ignition mechanism activated by an uninterrupted temperature field between gas mixture and wall developing at steady state. Heat losses from flame resulted in a crossover temperature higher than that of the lean-limit and stoichiometric free flames due to slow radical build-up. Thermal diffusion of hydrogen is shown to be responsible for enhancing the burning intensity of leading edge. Diffusion and reaction kinetics at the flame tip result in twin-peaked heat release rate distribution, most prominently for fuel rich flame (ϕ = 1.7).
[Display omitted]
•homogeneous ignition of flame by continuous ignition mechanism.•thermal diffusion of H2 at the leading edge affects flame structure.•twin-peaked heat release profile for rich flame.•unravels role of OH in reaction kinetics of rich flame.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2015.05.053</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Accumulation ; Combustion ; Diffusion rate ; Flame structure ; Hydrogen ; Mathematical models ; Microcombustion ; Stabilization ; Thermal diffusion ; Thermal engineering ; Tubes</subject><ispartof>Applied thermal engineering, 2015-08, Vol.87, p.539-546</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8b196fcb8f3f2b1db8ebf4809122e1ed2b9648ffd1afd5096accafab482e33613</citedby><cites>FETCH-LOGICAL-c363t-8b196fcb8f3f2b1db8ebf4809122e1ed2b9648ffd1afd5096accafab482e33613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2015.05.053$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jejurkar, Swarup Y.</creatorcontrib><creatorcontrib>Mishra, D.P.</creatorcontrib><title>Some aspects of stabilization and structure of laminar premixed hydrogen-air flames in a microchannel</title><title>Applied thermal engineering</title><description>In the present paper, flame stabilization and structure are investigated numerically for non-adiabatic hydrogen-air flames at different equivalence ratios and inlet velocities. A cylindrical microcombustor in which combustion occurs in the annular region between two concentric tubes is investigated. The inner hollow tube contains static nitrogen gas and this combination acts as a thermal reservoir that stores and recirculates heat to the incoming mixture. Investigations are carried out using detailed numerical model incorporating two-dimensional transport, thermal radiation, multi-step kinetics, and conjugate heat transfer. Flame is sustained by the continuous ignition mechanism activated by an uninterrupted temperature field between gas mixture and wall developing at steady state. Heat losses from flame resulted in a crossover temperature higher than that of the lean-limit and stoichiometric free flames due to slow radical build-up. Thermal diffusion of hydrogen is shown to be responsible for enhancing the burning intensity of leading edge. Diffusion and reaction kinetics at the flame tip result in twin-peaked heat release rate distribution, most prominently for fuel rich flame (ϕ = 1.7).
[Display omitted]
•homogeneous ignition of flame by continuous ignition mechanism.•thermal diffusion of H2 at the leading edge affects flame structure.•twin-peaked heat release profile for rich flame.•unravels role of OH in reaction kinetics of rich flame.</description><subject>Accumulation</subject><subject>Combustion</subject><subject>Diffusion rate</subject><subject>Flame structure</subject><subject>Hydrogen</subject><subject>Mathematical models</subject><subject>Microcombustion</subject><subject>Stabilization</subject><subject>Thermal diffusion</subject><subject>Thermal engineering</subject><subject>Tubes</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNUE1LxDAQzUHBdfU_5ODBS2vStN0WvMjiqiB4UM9hmkx2s6RpTVpx_fW2rBdvwoOBeR_MPEKuOEs54-XNPoW-d8MOQwsO_TbNGC9SNkOckAUXRZ3kgvMzch7jnjGeVat8QfC1a5FC7FENkXaGxgEa6-w3DLbzFLyeNmFUwxhwph201kOgfcDWfqGmu4MO3RZ9AjZQM9EYqZ2MtLUqdGoH3qO7IKcGXMTL37kk75v7t_Vj8vzy8LS-e06UKMWQVA2vS6OaygiTNVw3FTYmr1jNsww56qypy7wyRnMwumB1CUqBgSavMhSi5GJJro-5feg-RoyDbG1U6Bx47MYo-aoQRZazKp-kt0fpdGWMAY3sg20hHCRncm5U7uXfRuXcqGQzxGTfHO04vfNpMcioLHqF2oapSqk7-7-gH5R3jUg</recordid><startdate>20150805</startdate><enddate>20150805</enddate><creator>Jejurkar, Swarup Y.</creator><creator>Mishra, D.P.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20150805</creationdate><title>Some aspects of stabilization and structure of laminar premixed hydrogen-air flames in a microchannel</title><author>Jejurkar, Swarup Y. ; Mishra, D.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8b196fcb8f3f2b1db8ebf4809122e1ed2b9648ffd1afd5096accafab482e33613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accumulation</topic><topic>Combustion</topic><topic>Diffusion rate</topic><topic>Flame structure</topic><topic>Hydrogen</topic><topic>Mathematical models</topic><topic>Microcombustion</topic><topic>Stabilization</topic><topic>Thermal diffusion</topic><topic>Thermal engineering</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jejurkar, Swarup Y.</creatorcontrib><creatorcontrib>Mishra, D.P.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jejurkar, Swarup Y.</au><au>Mishra, D.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some aspects of stabilization and structure of laminar premixed hydrogen-air flames in a microchannel</atitle><jtitle>Applied thermal engineering</jtitle><date>2015-08-05</date><risdate>2015</risdate><volume>87</volume><spage>539</spage><epage>546</epage><pages>539-546</pages><issn>1359-4311</issn><abstract>In the present paper, flame stabilization and structure are investigated numerically for non-adiabatic hydrogen-air flames at different equivalence ratios and inlet velocities. A cylindrical microcombustor in which combustion occurs in the annular region between two concentric tubes is investigated. The inner hollow tube contains static nitrogen gas and this combination acts as a thermal reservoir that stores and recirculates heat to the incoming mixture. Investigations are carried out using detailed numerical model incorporating two-dimensional transport, thermal radiation, multi-step kinetics, and conjugate heat transfer. Flame is sustained by the continuous ignition mechanism activated by an uninterrupted temperature field between gas mixture and wall developing at steady state. Heat losses from flame resulted in a crossover temperature higher than that of the lean-limit and stoichiometric free flames due to slow radical build-up. Thermal diffusion of hydrogen is shown to be responsible for enhancing the burning intensity of leading edge. Diffusion and reaction kinetics at the flame tip result in twin-peaked heat release rate distribution, most prominently for fuel rich flame (ϕ = 1.7).
[Display omitted]
•homogeneous ignition of flame by continuous ignition mechanism.•thermal diffusion of H2 at the leading edge affects flame structure.•twin-peaked heat release profile for rich flame.•unravels role of OH in reaction kinetics of rich flame.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2015.05.053</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 2015-08, Vol.87, p.539-546 |
issn | 1359-4311 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753524084 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Accumulation Combustion Diffusion rate Flame structure Hydrogen Mathematical models Microcombustion Stabilization Thermal diffusion Thermal engineering Tubes |
title | Some aspects of stabilization and structure of laminar premixed hydrogen-air flames in a microchannel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A51%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20aspects%20of%20stabilization%20and%20structure%20of%20laminar%20premixed%20hydrogen-air%20flames%20in%20a%20microchannel&rft.jtitle=Applied%20thermal%20engineering&rft.au=Jejurkar,%20Swarup%20Y.&rft.date=2015-08-05&rft.volume=87&rft.spage=539&rft.epage=546&rft.pages=539-546&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2015.05.053&rft_dat=%3Cproquest_cross%3E1753524084%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753524084&rft_id=info:pmid/&rft_els_id=S1359431115005098&rfr_iscdi=true |