Structural disruption increases toxicity of graphene nanoribbons

ABSTRACT The increased utilization of graphene nanoribbons (GNRs) for biomedical and material science applications necessitates the thorough evaluation of potential toxicity of these materials under both intentional and accidental exposure scenarios. We here investigated the effects of structural di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied toxicology 2014-11, Vol.34 (11), p.1235-1246
Hauptverfasser: Mullick Chowdhury, Sayan, Dasgupta, Subham, McElroy, Anne E., Sitharaman, Balaji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1246
container_issue 11
container_start_page 1235
container_title Journal of applied toxicology
container_volume 34
creator Mullick Chowdhury, Sayan
Dasgupta, Subham
McElroy, Anne E.
Sitharaman, Balaji
description ABSTRACT The increased utilization of graphene nanoribbons (GNRs) for biomedical and material science applications necessitates the thorough evaluation of potential toxicity of these materials under both intentional and accidental exposure scenarios. We here investigated the effects of structural disruption of GNRs (induced by low‐energy bath and high‐energy probe sonication) to in vitro (human cell lines), and in vivo (Oryzias latipes embryo) biological systems. Our results demonstrate that low concentration (20 µg ml−1) suspensions of GNRs prepared by as little as 1 min of probe sonication can cause significant decreases in the overall metabolic state of cells in vitro, and increased embryo/larval mortality in vivo, as compared to bath sonicated or unsonicated suspensions. Structural analysis indicates that probe sonication leads to disruption in GNR structure and production of smaller carbonaceous debris, which may be the cause of the toxicity observed. These results point out the importance of assessing post‐production structural modifications for any application using nanomaterials. Copyright © 2014 John Wiley & Sons, Ltd. The effects of sonication induced structural disruption of graphene nanoribbons GNRs to in vitro (human cell lines), and in vivo (Oryzias latipes embryo) biological systems were investigated in this study. Our results demonstrate that low concentration (20 μg/mL) suspensions of GNRs prepared by as little as one min of probe sonication can cause significant decreases in the overall metabolic state of cells in vitro, and increased embryo/larval mortality in vivo, likely due to production of smaller carbonaceous debris.
doi_str_mv 10.1002/jat.3066
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753519771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1611612945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4536-235caa4026b3c8162830e45d17432b107fa1d5f976011f4b59326eeea0cfe1cf3</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMouq6Cv0AKXrxUM0mTbG_q4id-gYreQpqdatZusyYtuv_eiquCIMLAHObhYWZeQjaA7gClbHdsmh1OpVwgPaB5ngKTfJH0KJM0zbh6WCGrMY4p7WZssExWmGAsyyHvkb2bJrS2aYOpkpGLoZ02zteJq21AEzEmjX9z1jWzxJfJYzDTJ6wxqU3tgysKX8c1slSaKuL6vPfJ3dHh7fAkPb86Ph3un6c2E1ymjAtrTNZtVHA7AMkGnGImRqAyzgqgqjQwEmWuJAUos0LknElENNSWCLbkfbL96Z0G_9JibPTERYtVZWr0bdSgBBeQKwX_oxK6Ynm3WJ9s_ULHvg11d4gGISUIPuDqR2iDjzFgqafBTUyYaaD6IwDdBaA_AujQzbmwLSY4-ga_Pt4B6Sfw6iqc_SnSZ_u3c-Gcd7HBt2_ehGctFVdC318e6wN6DWJ4IvUFfwdnbJxe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566153837</pqid></control><display><type>article</type><title>Structural disruption increases toxicity of graphene nanoribbons</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Mullick Chowdhury, Sayan ; Dasgupta, Subham ; McElroy, Anne E. ; Sitharaman, Balaji</creator><creatorcontrib>Mullick Chowdhury, Sayan ; Dasgupta, Subham ; McElroy, Anne E. ; Sitharaman, Balaji</creatorcontrib><description>ABSTRACT The increased utilization of graphene nanoribbons (GNRs) for biomedical and material science applications necessitates the thorough evaluation of potential toxicity of these materials under both intentional and accidental exposure scenarios. We here investigated the effects of structural disruption of GNRs (induced by low‐energy bath and high‐energy probe sonication) to in vitro (human cell lines), and in vivo (Oryzias latipes embryo) biological systems. Our results demonstrate that low concentration (20 µg ml−1) suspensions of GNRs prepared by as little as 1 min of probe sonication can cause significant decreases in the overall metabolic state of cells in vitro, and increased embryo/larval mortality in vivo, as compared to bath sonicated or unsonicated suspensions. Structural analysis indicates that probe sonication leads to disruption in GNR structure and production of smaller carbonaceous debris, which may be the cause of the toxicity observed. These results point out the importance of assessing post‐production structural modifications for any application using nanomaterials. Copyright © 2014 John Wiley &amp; Sons, Ltd. The effects of sonication induced structural disruption of graphene nanoribbons GNRs to in vitro (human cell lines), and in vivo (Oryzias latipes embryo) biological systems were investigated in this study. Our results demonstrate that low concentration (20 μg/mL) suspensions of GNRs prepared by as little as one min of probe sonication can cause significant decreases in the overall metabolic state of cells in vitro, and increased embryo/larval mortality in vivo, likely due to production of smaller carbonaceous debris.</description><identifier>ISSN: 0260-437X</identifier><identifier>EISSN: 1099-1263</identifier><identifier>DOI: 10.1002/jat.3066</identifier><identifier>PMID: 25224919</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animals ; Biocompatibility ; Biomedical materials ; carbon nanomaterials ; Cell Line, Tumor ; cytotoxicity ; embryo toxicity ; Embryo, Nonmammalian - drug effects ; Embryos ; Graphene ; Graphite - chemistry ; Graphite - toxicity ; Humans ; In vitro testing ; In vivo testing ; In vivo tests ; Japanese medaka ; Larva - drug effects ; Materials science ; MCF-7 Cells ; Microscopy, Atomic Force ; Microscopy, Electron, Transmission ; Nanotubes, Carbon - chemistry ; Nanotubes, Carbon - toxicity ; Oryzias - embryology ; Oryzias latipes ; sonication ; Spectroscopy, Fourier Transform Infrared ; Spectrum Analysis, Raman ; Structure-Activity Relationship ; Surgical implants ; Toxicity</subject><ispartof>Journal of applied toxicology, 2014-11, Vol.34 (11), p.1235-1246</ispartof><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4536-235caa4026b3c8162830e45d17432b107fa1d5f976011f4b59326eeea0cfe1cf3</citedby><cites>FETCH-LOGICAL-c4536-235caa4026b3c8162830e45d17432b107fa1d5f976011f4b59326eeea0cfe1cf3</cites><orcidid>0000-0001-8391-8076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjat.3066$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjat.3066$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25224919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mullick Chowdhury, Sayan</creatorcontrib><creatorcontrib>Dasgupta, Subham</creatorcontrib><creatorcontrib>McElroy, Anne E.</creatorcontrib><creatorcontrib>Sitharaman, Balaji</creatorcontrib><title>Structural disruption increases toxicity of graphene nanoribbons</title><title>Journal of applied toxicology</title><addtitle>J. Appl. Toxicol</addtitle><description>ABSTRACT The increased utilization of graphene nanoribbons (GNRs) for biomedical and material science applications necessitates the thorough evaluation of potential toxicity of these materials under both intentional and accidental exposure scenarios. We here investigated the effects of structural disruption of GNRs (induced by low‐energy bath and high‐energy probe sonication) to in vitro (human cell lines), and in vivo (Oryzias latipes embryo) biological systems. Our results demonstrate that low concentration (20 µg ml−1) suspensions of GNRs prepared by as little as 1 min of probe sonication can cause significant decreases in the overall metabolic state of cells in vitro, and increased embryo/larval mortality in vivo, as compared to bath sonicated or unsonicated suspensions. Structural analysis indicates that probe sonication leads to disruption in GNR structure and production of smaller carbonaceous debris, which may be the cause of the toxicity observed. These results point out the importance of assessing post‐production structural modifications for any application using nanomaterials. Copyright © 2014 John Wiley &amp; Sons, Ltd. The effects of sonication induced structural disruption of graphene nanoribbons GNRs to in vitro (human cell lines), and in vivo (Oryzias latipes embryo) biological systems were investigated in this study. Our results demonstrate that low concentration (20 μg/mL) suspensions of GNRs prepared by as little as one min of probe sonication can cause significant decreases in the overall metabolic state of cells in vitro, and increased embryo/larval mortality in vivo, likely due to production of smaller carbonaceous debris.</description><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>carbon nanomaterials</subject><subject>Cell Line, Tumor</subject><subject>cytotoxicity</subject><subject>embryo toxicity</subject><subject>Embryo, Nonmammalian - drug effects</subject><subject>Embryos</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Graphite - toxicity</subject><subject>Humans</subject><subject>In vitro testing</subject><subject>In vivo testing</subject><subject>In vivo tests</subject><subject>Japanese medaka</subject><subject>Larva - drug effects</subject><subject>Materials science</subject><subject>MCF-7 Cells</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Nanotubes, Carbon - toxicity</subject><subject>Oryzias - embryology</subject><subject>Oryzias latipes</subject><subject>sonication</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Spectrum Analysis, Raman</subject><subject>Structure-Activity Relationship</subject><subject>Surgical implants</subject><subject>Toxicity</subject><issn>0260-437X</issn><issn>1099-1263</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1LxDAQhoMouq6Cv0AKXrxUM0mTbG_q4id-gYreQpqdatZusyYtuv_eiquCIMLAHObhYWZeQjaA7gClbHdsmh1OpVwgPaB5ngKTfJH0KJM0zbh6WCGrMY4p7WZssExWmGAsyyHvkb2bJrS2aYOpkpGLoZ02zteJq21AEzEmjX9z1jWzxJfJYzDTJ6wxqU3tgysKX8c1slSaKuL6vPfJ3dHh7fAkPb86Ph3un6c2E1ymjAtrTNZtVHA7AMkGnGImRqAyzgqgqjQwEmWuJAUos0LknElENNSWCLbkfbL96Z0G_9JibPTERYtVZWr0bdSgBBeQKwX_oxK6Ynm3WJ9s_ULHvg11d4gGISUIPuDqR2iDjzFgqafBTUyYaaD6IwDdBaA_AujQzbmwLSY4-ga_Pt4B6Sfw6iqc_SnSZ_u3c-Gcd7HBt2_ehGctFVdC318e6wN6DWJ4IvUFfwdnbJxe</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Mullick Chowdhury, Sayan</creator><creator>Dasgupta, Subham</creator><creator>McElroy, Anne E.</creator><creator>Sitharaman, Balaji</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>K9.</scope><scope>SOI</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8391-8076</orcidid></search><sort><creationdate>201411</creationdate><title>Structural disruption increases toxicity of graphene nanoribbons</title><author>Mullick Chowdhury, Sayan ; Dasgupta, Subham ; McElroy, Anne E. ; Sitharaman, Balaji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4536-235caa4026b3c8162830e45d17432b107fa1d5f976011f4b59326eeea0cfe1cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>carbon nanomaterials</topic><topic>Cell Line, Tumor</topic><topic>cytotoxicity</topic><topic>embryo toxicity</topic><topic>Embryo, Nonmammalian - drug effects</topic><topic>Embryos</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Graphite - toxicity</topic><topic>Humans</topic><topic>In vitro testing</topic><topic>In vivo testing</topic><topic>In vivo tests</topic><topic>Japanese medaka</topic><topic>Larva - drug effects</topic><topic>Materials science</topic><topic>MCF-7 Cells</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Nanotubes, Carbon - toxicity</topic><topic>Oryzias - embryology</topic><topic>Oryzias latipes</topic><topic>sonication</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Spectrum Analysis, Raman</topic><topic>Structure-Activity Relationship</topic><topic>Surgical implants</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mullick Chowdhury, Sayan</creatorcontrib><creatorcontrib>Dasgupta, Subham</creatorcontrib><creatorcontrib>McElroy, Anne E.</creatorcontrib><creatorcontrib>Sitharaman, Balaji</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mullick Chowdhury, Sayan</au><au>Dasgupta, Subham</au><au>McElroy, Anne E.</au><au>Sitharaman, Balaji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural disruption increases toxicity of graphene nanoribbons</atitle><jtitle>Journal of applied toxicology</jtitle><addtitle>J. Appl. Toxicol</addtitle><date>2014-11</date><risdate>2014</risdate><volume>34</volume><issue>11</issue><spage>1235</spage><epage>1246</epage><pages>1235-1246</pages><issn>0260-437X</issn><eissn>1099-1263</eissn><abstract>ABSTRACT The increased utilization of graphene nanoribbons (GNRs) for biomedical and material science applications necessitates the thorough evaluation of potential toxicity of these materials under both intentional and accidental exposure scenarios. We here investigated the effects of structural disruption of GNRs (induced by low‐energy bath and high‐energy probe sonication) to in vitro (human cell lines), and in vivo (Oryzias latipes embryo) biological systems. Our results demonstrate that low concentration (20 µg ml−1) suspensions of GNRs prepared by as little as 1 min of probe sonication can cause significant decreases in the overall metabolic state of cells in vitro, and increased embryo/larval mortality in vivo, as compared to bath sonicated or unsonicated suspensions. Structural analysis indicates that probe sonication leads to disruption in GNR structure and production of smaller carbonaceous debris, which may be the cause of the toxicity observed. These results point out the importance of assessing post‐production structural modifications for any application using nanomaterials. Copyright © 2014 John Wiley &amp; Sons, Ltd. The effects of sonication induced structural disruption of graphene nanoribbons GNRs to in vitro (human cell lines), and in vivo (Oryzias latipes embryo) biological systems were investigated in this study. Our results demonstrate that low concentration (20 μg/mL) suspensions of GNRs prepared by as little as one min of probe sonication can cause significant decreases in the overall metabolic state of cells in vitro, and increased embryo/larval mortality in vivo, likely due to production of smaller carbonaceous debris.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>25224919</pmid><doi>10.1002/jat.3066</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8391-8076</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0260-437X
ispartof Journal of applied toxicology, 2014-11, Vol.34 (11), p.1235-1246
issn 0260-437X
1099-1263
language eng
recordid cdi_proquest_miscellaneous_1753519771
source MEDLINE; Wiley Online Library All Journals
subjects Animals
Biocompatibility
Biomedical materials
carbon nanomaterials
Cell Line, Tumor
cytotoxicity
embryo toxicity
Embryo, Nonmammalian - drug effects
Embryos
Graphene
Graphite - chemistry
Graphite - toxicity
Humans
In vitro testing
In vivo testing
In vivo tests
Japanese medaka
Larva - drug effects
Materials science
MCF-7 Cells
Microscopy, Atomic Force
Microscopy, Electron, Transmission
Nanotubes, Carbon - chemistry
Nanotubes, Carbon - toxicity
Oryzias - embryology
Oryzias latipes
sonication
Spectroscopy, Fourier Transform Infrared
Spectrum Analysis, Raman
Structure-Activity Relationship
Surgical implants
Toxicity
title Structural disruption increases toxicity of graphene nanoribbons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A37%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20disruption%20increases%20toxicity%20of%20graphene%20nanoribbons&rft.jtitle=Journal%20of%20applied%20toxicology&rft.au=Mullick%20Chowdhury,%20Sayan&rft.date=2014-11&rft.volume=34&rft.issue=11&rft.spage=1235&rft.epage=1246&rft.pages=1235-1246&rft.issn=0260-437X&rft.eissn=1099-1263&rft_id=info:doi/10.1002/jat.3066&rft_dat=%3Cproquest_cross%3E1611612945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1566153837&rft_id=info:pmid/25224919&rfr_iscdi=true