Structural disruption increases toxicity of graphene nanoribbons
ABSTRACT The increased utilization of graphene nanoribbons (GNRs) for biomedical and material science applications necessitates the thorough evaluation of potential toxicity of these materials under both intentional and accidental exposure scenarios. We here investigated the effects of structural di...
Gespeichert in:
Veröffentlicht in: | Journal of applied toxicology 2014-11, Vol.34 (11), p.1235-1246 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1246 |
---|---|
container_issue | 11 |
container_start_page | 1235 |
container_title | Journal of applied toxicology |
container_volume | 34 |
creator | Mullick Chowdhury, Sayan Dasgupta, Subham McElroy, Anne E. Sitharaman, Balaji |
description | ABSTRACT
The increased utilization of graphene nanoribbons (GNRs) for biomedical and material science applications necessitates the thorough evaluation of potential toxicity of these materials under both intentional and accidental exposure scenarios. We here investigated the effects of structural disruption of GNRs (induced by low‐energy bath and high‐energy probe sonication) to in vitro (human cell lines), and in vivo (Oryzias latipes embryo) biological systems. Our results demonstrate that low concentration (20 µg ml−1) suspensions of GNRs prepared by as little as 1 min of probe sonication can cause significant decreases in the overall metabolic state of cells in vitro, and increased embryo/larval mortality in vivo, as compared to bath sonicated or unsonicated suspensions. Structural analysis indicates that probe sonication leads to disruption in GNR structure and production of smaller carbonaceous debris, which may be the cause of the toxicity observed. These results point out the importance of assessing post‐production structural modifications for any application using nanomaterials. Copyright © 2014 John Wiley & Sons, Ltd.
The effects of sonication induced structural disruption of graphene nanoribbons GNRs to in vitro (human cell lines), and in vivo (Oryzias latipes embryo) biological systems were investigated in this study. Our results demonstrate that low concentration (20 μg/mL) suspensions of GNRs prepared by as little as one min of probe sonication can cause significant decreases in the overall metabolic state of cells in vitro, and increased embryo/larval mortality in vivo, likely due to production of smaller carbonaceous debris. |
doi_str_mv | 10.1002/jat.3066 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753519771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1611612945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4536-235caa4026b3c8162830e45d17432b107fa1d5f976011f4b59326eeea0cfe1cf3</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMouq6Cv0AKXrxUM0mTbG_q4id-gYreQpqdatZusyYtuv_eiquCIMLAHObhYWZeQjaA7gClbHdsmh1OpVwgPaB5ngKTfJH0KJM0zbh6WCGrMY4p7WZssExWmGAsyyHvkb2bJrS2aYOpkpGLoZ02zteJq21AEzEmjX9z1jWzxJfJYzDTJ6wxqU3tgysKX8c1slSaKuL6vPfJ3dHh7fAkPb86Ph3un6c2E1ymjAtrTNZtVHA7AMkGnGImRqAyzgqgqjQwEmWuJAUos0LknElENNSWCLbkfbL96Z0G_9JibPTERYtVZWr0bdSgBBeQKwX_oxK6Ynm3WJ9s_ULHvg11d4gGISUIPuDqR2iDjzFgqafBTUyYaaD6IwDdBaA_AujQzbmwLSY4-ga_Pt4B6Sfw6iqc_SnSZ_u3c-Gcd7HBt2_ehGctFVdC318e6wN6DWJ4IvUFfwdnbJxe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566153837</pqid></control><display><type>article</type><title>Structural disruption increases toxicity of graphene nanoribbons</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Mullick Chowdhury, Sayan ; Dasgupta, Subham ; McElroy, Anne E. ; Sitharaman, Balaji</creator><creatorcontrib>Mullick Chowdhury, Sayan ; Dasgupta, Subham ; McElroy, Anne E. ; Sitharaman, Balaji</creatorcontrib><description>ABSTRACT
The increased utilization of graphene nanoribbons (GNRs) for biomedical and material science applications necessitates the thorough evaluation of potential toxicity of these materials under both intentional and accidental exposure scenarios. We here investigated the effects of structural disruption of GNRs (induced by low‐energy bath and high‐energy probe sonication) to in vitro (human cell lines), and in vivo (Oryzias latipes embryo) biological systems. Our results demonstrate that low concentration (20 µg ml−1) suspensions of GNRs prepared by as little as 1 min of probe sonication can cause significant decreases in the overall metabolic state of cells in vitro, and increased embryo/larval mortality in vivo, as compared to bath sonicated or unsonicated suspensions. Structural analysis indicates that probe sonication leads to disruption in GNR structure and production of smaller carbonaceous debris, which may be the cause of the toxicity observed. These results point out the importance of assessing post‐production structural modifications for any application using nanomaterials. Copyright © 2014 John Wiley & Sons, Ltd.
The effects of sonication induced structural disruption of graphene nanoribbons GNRs to in vitro (human cell lines), and in vivo (Oryzias latipes embryo) biological systems were investigated in this study. Our results demonstrate that low concentration (20 μg/mL) suspensions of GNRs prepared by as little as one min of probe sonication can cause significant decreases in the overall metabolic state of cells in vitro, and increased embryo/larval mortality in vivo, likely due to production of smaller carbonaceous debris.</description><identifier>ISSN: 0260-437X</identifier><identifier>EISSN: 1099-1263</identifier><identifier>DOI: 10.1002/jat.3066</identifier><identifier>PMID: 25224919</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animals ; Biocompatibility ; Biomedical materials ; carbon nanomaterials ; Cell Line, Tumor ; cytotoxicity ; embryo toxicity ; Embryo, Nonmammalian - drug effects ; Embryos ; Graphene ; Graphite - chemistry ; Graphite - toxicity ; Humans ; In vitro testing ; In vivo testing ; In vivo tests ; Japanese medaka ; Larva - drug effects ; Materials science ; MCF-7 Cells ; Microscopy, Atomic Force ; Microscopy, Electron, Transmission ; Nanotubes, Carbon - chemistry ; Nanotubes, Carbon - toxicity ; Oryzias - embryology ; Oryzias latipes ; sonication ; Spectroscopy, Fourier Transform Infrared ; Spectrum Analysis, Raman ; Structure-Activity Relationship ; Surgical implants ; Toxicity</subject><ispartof>Journal of applied toxicology, 2014-11, Vol.34 (11), p.1235-1246</ispartof><rights>Copyright © 2014 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4536-235caa4026b3c8162830e45d17432b107fa1d5f976011f4b59326eeea0cfe1cf3</citedby><cites>FETCH-LOGICAL-c4536-235caa4026b3c8162830e45d17432b107fa1d5f976011f4b59326eeea0cfe1cf3</cites><orcidid>0000-0001-8391-8076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjat.3066$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjat.3066$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25224919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mullick Chowdhury, Sayan</creatorcontrib><creatorcontrib>Dasgupta, Subham</creatorcontrib><creatorcontrib>McElroy, Anne E.</creatorcontrib><creatorcontrib>Sitharaman, Balaji</creatorcontrib><title>Structural disruption increases toxicity of graphene nanoribbons</title><title>Journal of applied toxicology</title><addtitle>J. Appl. Toxicol</addtitle><description>ABSTRACT
The increased utilization of graphene nanoribbons (GNRs) for biomedical and material science applications necessitates the thorough evaluation of potential toxicity of these materials under both intentional and accidental exposure scenarios. We here investigated the effects of structural disruption of GNRs (induced by low‐energy bath and high‐energy probe sonication) to in vitro (human cell lines), and in vivo (Oryzias latipes embryo) biological systems. Our results demonstrate that low concentration (20 µg ml−1) suspensions of GNRs prepared by as little as 1 min of probe sonication can cause significant decreases in the overall metabolic state of cells in vitro, and increased embryo/larval mortality in vivo, as compared to bath sonicated or unsonicated suspensions. Structural analysis indicates that probe sonication leads to disruption in GNR structure and production of smaller carbonaceous debris, which may be the cause of the toxicity observed. These results point out the importance of assessing post‐production structural modifications for any application using nanomaterials. Copyright © 2014 John Wiley & Sons, Ltd.
The effects of sonication induced structural disruption of graphene nanoribbons GNRs to in vitro (human cell lines), and in vivo (Oryzias latipes embryo) biological systems were investigated in this study. Our results demonstrate that low concentration (20 μg/mL) suspensions of GNRs prepared by as little as one min of probe sonication can cause significant decreases in the overall metabolic state of cells in vitro, and increased embryo/larval mortality in vivo, likely due to production of smaller carbonaceous debris.</description><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>carbon nanomaterials</subject><subject>Cell Line, Tumor</subject><subject>cytotoxicity</subject><subject>embryo toxicity</subject><subject>Embryo, Nonmammalian - drug effects</subject><subject>Embryos</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Graphite - toxicity</subject><subject>Humans</subject><subject>In vitro testing</subject><subject>In vivo testing</subject><subject>In vivo tests</subject><subject>Japanese medaka</subject><subject>Larva - drug effects</subject><subject>Materials science</subject><subject>MCF-7 Cells</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Nanotubes, Carbon - toxicity</subject><subject>Oryzias - embryology</subject><subject>Oryzias latipes</subject><subject>sonication</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Spectrum Analysis, Raman</subject><subject>Structure-Activity Relationship</subject><subject>Surgical implants</subject><subject>Toxicity</subject><issn>0260-437X</issn><issn>1099-1263</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1LxDAQhoMouq6Cv0AKXrxUM0mTbG_q4id-gYreQpqdatZusyYtuv_eiquCIMLAHObhYWZeQjaA7gClbHdsmh1OpVwgPaB5ngKTfJH0KJM0zbh6WCGrMY4p7WZssExWmGAsyyHvkb2bJrS2aYOpkpGLoZ02zteJq21AEzEmjX9z1jWzxJfJYzDTJ6wxqU3tgysKX8c1slSaKuL6vPfJ3dHh7fAkPb86Ph3un6c2E1ymjAtrTNZtVHA7AMkGnGImRqAyzgqgqjQwEmWuJAUos0LknElENNSWCLbkfbL96Z0G_9JibPTERYtVZWr0bdSgBBeQKwX_oxK6Ynm3WJ9s_ULHvg11d4gGISUIPuDqR2iDjzFgqafBTUyYaaD6IwDdBaA_AujQzbmwLSY4-ga_Pt4B6Sfw6iqc_SnSZ_u3c-Gcd7HBt2_ehGctFVdC318e6wN6DWJ4IvUFfwdnbJxe</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Mullick Chowdhury, Sayan</creator><creator>Dasgupta, Subham</creator><creator>McElroy, Anne E.</creator><creator>Sitharaman, Balaji</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>K9.</scope><scope>SOI</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8391-8076</orcidid></search><sort><creationdate>201411</creationdate><title>Structural disruption increases toxicity of graphene nanoribbons</title><author>Mullick Chowdhury, Sayan ; Dasgupta, Subham ; McElroy, Anne E. ; Sitharaman, Balaji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4536-235caa4026b3c8162830e45d17432b107fa1d5f976011f4b59326eeea0cfe1cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>carbon nanomaterials</topic><topic>Cell Line, Tumor</topic><topic>cytotoxicity</topic><topic>embryo toxicity</topic><topic>Embryo, Nonmammalian - drug effects</topic><topic>Embryos</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Graphite - toxicity</topic><topic>Humans</topic><topic>In vitro testing</topic><topic>In vivo testing</topic><topic>In vivo tests</topic><topic>Japanese medaka</topic><topic>Larva - drug effects</topic><topic>Materials science</topic><topic>MCF-7 Cells</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Nanotubes, Carbon - toxicity</topic><topic>Oryzias - embryology</topic><topic>Oryzias latipes</topic><topic>sonication</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Spectrum Analysis, Raman</topic><topic>Structure-Activity Relationship</topic><topic>Surgical implants</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mullick Chowdhury, Sayan</creatorcontrib><creatorcontrib>Dasgupta, Subham</creatorcontrib><creatorcontrib>McElroy, Anne E.</creatorcontrib><creatorcontrib>Sitharaman, Balaji</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mullick Chowdhury, Sayan</au><au>Dasgupta, Subham</au><au>McElroy, Anne E.</au><au>Sitharaman, Balaji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural disruption increases toxicity of graphene nanoribbons</atitle><jtitle>Journal of applied toxicology</jtitle><addtitle>J. Appl. Toxicol</addtitle><date>2014-11</date><risdate>2014</risdate><volume>34</volume><issue>11</issue><spage>1235</spage><epage>1246</epage><pages>1235-1246</pages><issn>0260-437X</issn><eissn>1099-1263</eissn><abstract>ABSTRACT
The increased utilization of graphene nanoribbons (GNRs) for biomedical and material science applications necessitates the thorough evaluation of potential toxicity of these materials under both intentional and accidental exposure scenarios. We here investigated the effects of structural disruption of GNRs (induced by low‐energy bath and high‐energy probe sonication) to in vitro (human cell lines), and in vivo (Oryzias latipes embryo) biological systems. Our results demonstrate that low concentration (20 µg ml−1) suspensions of GNRs prepared by as little as 1 min of probe sonication can cause significant decreases in the overall metabolic state of cells in vitro, and increased embryo/larval mortality in vivo, as compared to bath sonicated or unsonicated suspensions. Structural analysis indicates that probe sonication leads to disruption in GNR structure and production of smaller carbonaceous debris, which may be the cause of the toxicity observed. These results point out the importance of assessing post‐production structural modifications for any application using nanomaterials. Copyright © 2014 John Wiley & Sons, Ltd.
The effects of sonication induced structural disruption of graphene nanoribbons GNRs to in vitro (human cell lines), and in vivo (Oryzias latipes embryo) biological systems were investigated in this study. Our results demonstrate that low concentration (20 μg/mL) suspensions of GNRs prepared by as little as one min of probe sonication can cause significant decreases in the overall metabolic state of cells in vitro, and increased embryo/larval mortality in vivo, likely due to production of smaller carbonaceous debris.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>25224919</pmid><doi>10.1002/jat.3066</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8391-8076</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0260-437X |
ispartof | Journal of applied toxicology, 2014-11, Vol.34 (11), p.1235-1246 |
issn | 0260-437X 1099-1263 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753519771 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Animals Biocompatibility Biomedical materials carbon nanomaterials Cell Line, Tumor cytotoxicity embryo toxicity Embryo, Nonmammalian - drug effects Embryos Graphene Graphite - chemistry Graphite - toxicity Humans In vitro testing In vivo testing In vivo tests Japanese medaka Larva - drug effects Materials science MCF-7 Cells Microscopy, Atomic Force Microscopy, Electron, Transmission Nanotubes, Carbon - chemistry Nanotubes, Carbon - toxicity Oryzias - embryology Oryzias latipes sonication Spectroscopy, Fourier Transform Infrared Spectrum Analysis, Raman Structure-Activity Relationship Surgical implants Toxicity |
title | Structural disruption increases toxicity of graphene nanoribbons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A37%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20disruption%20increases%20toxicity%20of%20graphene%20nanoribbons&rft.jtitle=Journal%20of%20applied%20toxicology&rft.au=Mullick%20Chowdhury,%20Sayan&rft.date=2014-11&rft.volume=34&rft.issue=11&rft.spage=1235&rft.epage=1246&rft.pages=1235-1246&rft.issn=0260-437X&rft.eissn=1099-1263&rft_id=info:doi/10.1002/jat.3066&rft_dat=%3Cproquest_cross%3E1611612945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1566153837&rft_id=info:pmid/25224919&rfr_iscdi=true |