Cubic Tessellations of the Helicosms
Up to isomorphism, there are six fixed-point free crystallographic groups in Euclidean 3-space E 3 generated by twists (screw motions). In each case, an orientable 3-manifold is obtained as the quotient of E 3 by such a group. The cubic tessellation of E 3 induces tessellations on each such manifold...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2015-10, Vol.54 (3), p.686-704 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 704 |
---|---|
container_issue | 3 |
container_start_page | 686 |
container_title | Discrete & computational geometry |
container_volume | 54 |
creator | Hubard, Isabel Mixer, Mark Pellicer, Daniel Weiss, Asia Ivić |
description | Up to isomorphism, there are six fixed-point free crystallographic groups in Euclidean 3-space
E
3
generated by twists (screw motions). In each case, an orientable 3-manifold is obtained as the quotient of
E
3
by such a group. The cubic tessellation of
E
3
induces tessellations on each such manifold. The corresponding classification for the 3-torus and the didicosm were classified as ‘equivelar toroids’ and ‘cubic tessellation of the didicosm’ in previous works. This paper concludes the classification of cubic tessellations on the remaining four orientable manifolds. |
doi_str_mv | 10.1007/s00454-015-9721-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753518946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3796431171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-10ebc628944ea839c7a8cb88451ea4fff04a70b42f81e6daaa8620a4586aefa43</originalsourceid><addsrcrecordid>eNp10DFPwzAQBWALgUQp_AC2SDCwGO6Sc-KMqKIUqRJLmS3H2JAqTUouGfrvcRUGhMR0y_eeTk-Ia4R7BCgeGIAUSUAlyyJFeTgRM6QslUBEp2IGWJRSZUV-Li6YtxB5CXombhdjVbtk45l909ih7lpOupAMnz5Z-aZ2He_4UpwF27C_-rlz8bZ82ixWcv36_LJ4XEtHWA4SwVcuT3VJ5K3OSldY7SqtSaG3FEIAsgVUlAaNPn-31uo8BUtK59YHS9lc3E29-777Gj0PZlezO_7V-m5kg4XKFMb-PNKbP3TbjX0bv4sKylRhlFHhpFzfMfc-mH1f72x_MAjmuJuZdjNxN3PczRxiJp0yHG374ftfzf-GvgGrv27L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709251351</pqid></control><display><type>article</type><title>Cubic Tessellations of the Helicosms</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hubard, Isabel ; Mixer, Mark ; Pellicer, Daniel ; Weiss, Asia Ivić</creator><creatorcontrib>Hubard, Isabel ; Mixer, Mark ; Pellicer, Daniel ; Weiss, Asia Ivić</creatorcontrib><description>Up to isomorphism, there are six fixed-point free crystallographic groups in Euclidean 3-space
E
3
generated by twists (screw motions). In each case, an orientable 3-manifold is obtained as the quotient of
E
3
by such a group. The cubic tessellation of
E
3
induces tessellations on each such manifold. The corresponding classification for the 3-torus and the didicosm were classified as ‘equivelar toroids’ and ‘cubic tessellation of the didicosm’ in previous works. This paper concludes the classification of cubic tessellations on the remaining four orientable manifolds.</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-015-9721-y</identifier><identifier>CODEN: DCGEER</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classification ; Combinatorics ; Computational geometry ; Computational Mathematics and Numerical Analysis ; Crystallography ; Euclidean geometry ; Manifolds ; Mathematics ; Mathematics and Statistics ; Screws ; Tessellation ; Texts</subject><ispartof>Discrete & computational geometry, 2015-10, Vol.54 (3), p.686-704</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-10ebc628944ea839c7a8cb88451ea4fff04a70b42f81e6daaa8620a4586aefa43</citedby><cites>FETCH-LOGICAL-c419t-10ebc628944ea839c7a8cb88451ea4fff04a70b42f81e6daaa8620a4586aefa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00454-015-9721-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00454-015-9721-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hubard, Isabel</creatorcontrib><creatorcontrib>Mixer, Mark</creatorcontrib><creatorcontrib>Pellicer, Daniel</creatorcontrib><creatorcontrib>Weiss, Asia Ivić</creatorcontrib><title>Cubic Tessellations of the Helicosms</title><title>Discrete & computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>Up to isomorphism, there are six fixed-point free crystallographic groups in Euclidean 3-space
E
3
generated by twists (screw motions). In each case, an orientable 3-manifold is obtained as the quotient of
E
3
by such a group. The cubic tessellation of
E
3
induces tessellations on each such manifold. The corresponding classification for the 3-torus and the didicosm were classified as ‘equivelar toroids’ and ‘cubic tessellation of the didicosm’ in previous works. This paper concludes the classification of cubic tessellations on the remaining four orientable manifolds.</description><subject>Classification</subject><subject>Combinatorics</subject><subject>Computational geometry</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Crystallography</subject><subject>Euclidean geometry</subject><subject>Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Screws</subject><subject>Tessellation</subject><subject>Texts</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10DFPwzAQBWALgUQp_AC2SDCwGO6Sc-KMqKIUqRJLmS3H2JAqTUouGfrvcRUGhMR0y_eeTk-Ia4R7BCgeGIAUSUAlyyJFeTgRM6QslUBEp2IGWJRSZUV-Li6YtxB5CXombhdjVbtk45l909ih7lpOupAMnz5Z-aZ2He_4UpwF27C_-rlz8bZ82ixWcv36_LJ4XEtHWA4SwVcuT3VJ5K3OSldY7SqtSaG3FEIAsgVUlAaNPn-31uo8BUtK59YHS9lc3E29-777Gj0PZlezO_7V-m5kg4XKFMb-PNKbP3TbjX0bv4sKylRhlFHhpFzfMfc-mH1f72x_MAjmuJuZdjNxN3PczRxiJp0yHG374ftfzf-GvgGrv27L</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Hubard, Isabel</creator><creator>Mixer, Mark</creator><creator>Pellicer, Daniel</creator><creator>Weiss, Asia Ivić</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20151001</creationdate><title>Cubic Tessellations of the Helicosms</title><author>Hubard, Isabel ; Mixer, Mark ; Pellicer, Daniel ; Weiss, Asia Ivić</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-10ebc628944ea839c7a8cb88451ea4fff04a70b42f81e6daaa8620a4586aefa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classification</topic><topic>Combinatorics</topic><topic>Computational geometry</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Crystallography</topic><topic>Euclidean geometry</topic><topic>Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Screws</topic><topic>Tessellation</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hubard, Isabel</creatorcontrib><creatorcontrib>Mixer, Mark</creatorcontrib><creatorcontrib>Pellicer, Daniel</creatorcontrib><creatorcontrib>Weiss, Asia Ivić</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete & computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hubard, Isabel</au><au>Mixer, Mark</au><au>Pellicer, Daniel</au><au>Weiss, Asia Ivić</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cubic Tessellations of the Helicosms</atitle><jtitle>Discrete & computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>54</volume><issue>3</issue><spage>686</spage><epage>704</epage><pages>686-704</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><coden>DCGEER</coden><abstract>Up to isomorphism, there are six fixed-point free crystallographic groups in Euclidean 3-space
E
3
generated by twists (screw motions). In each case, an orientable 3-manifold is obtained as the quotient of
E
3
by such a group. The cubic tessellation of
E
3
induces tessellations on each such manifold. The corresponding classification for the 3-torus and the didicosm were classified as ‘equivelar toroids’ and ‘cubic tessellation of the didicosm’ in previous works. This paper concludes the classification of cubic tessellations on the remaining four orientable manifolds.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00454-015-9721-y</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0179-5376 |
ispartof | Discrete & computational geometry, 2015-10, Vol.54 (3), p.686-704 |
issn | 0179-5376 1432-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753518946 |
source | SpringerLink Journals - AutoHoldings |
subjects | Classification Combinatorics Computational geometry Computational Mathematics and Numerical Analysis Crystallography Euclidean geometry Manifolds Mathematics Mathematics and Statistics Screws Tessellation Texts |
title | Cubic Tessellations of the Helicosms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cubic%20Tessellations%20of%20the%20Helicosms&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Hubard,%20Isabel&rft.date=2015-10-01&rft.volume=54&rft.issue=3&rft.spage=686&rft.epage=704&rft.pages=686-704&rft.issn=0179-5376&rft.eissn=1432-0444&rft.coden=DCGEER&rft_id=info:doi/10.1007/s00454-015-9721-y&rft_dat=%3Cproquest_cross%3E3796431171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709251351&rft_id=info:pmid/&rfr_iscdi=true |