Cubic Tessellations of the Helicosms

Up to isomorphism, there are six fixed-point free crystallographic groups in Euclidean 3-space E 3 generated by twists (screw motions). In each case, an orientable 3-manifold is obtained as the quotient of E 3 by such a group. The cubic tessellation of E 3 induces tessellations on each such manifold...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2015-10, Vol.54 (3), p.686-704
Hauptverfasser: Hubard, Isabel, Mixer, Mark, Pellicer, Daniel, Weiss, Asia Ivić
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 704
container_issue 3
container_start_page 686
container_title Discrete & computational geometry
container_volume 54
creator Hubard, Isabel
Mixer, Mark
Pellicer, Daniel
Weiss, Asia Ivić
description Up to isomorphism, there are six fixed-point free crystallographic groups in Euclidean 3-space E 3 generated by twists (screw motions). In each case, an orientable 3-manifold is obtained as the quotient of E 3 by such a group. The cubic tessellation of E 3 induces tessellations on each such manifold. The corresponding classification for the 3-torus and the didicosm were classified as ‘equivelar toroids’ and ‘cubic tessellation of the didicosm’ in previous works. This paper concludes the classification of cubic tessellations on the remaining four orientable manifolds.
doi_str_mv 10.1007/s00454-015-9721-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753518946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3796431171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-10ebc628944ea839c7a8cb88451ea4fff04a70b42f81e6daaa8620a4586aefa43</originalsourceid><addsrcrecordid>eNp10DFPwzAQBWALgUQp_AC2SDCwGO6Sc-KMqKIUqRJLmS3H2JAqTUouGfrvcRUGhMR0y_eeTk-Ia4R7BCgeGIAUSUAlyyJFeTgRM6QslUBEp2IGWJRSZUV-Li6YtxB5CXombhdjVbtk45l909ih7lpOupAMnz5Z-aZ2He_4UpwF27C_-rlz8bZ82ixWcv36_LJ4XEtHWA4SwVcuT3VJ5K3OSldY7SqtSaG3FEIAsgVUlAaNPn-31uo8BUtK59YHS9lc3E29-777Gj0PZlezO_7V-m5kg4XKFMb-PNKbP3TbjX0bv4sKylRhlFHhpFzfMfc-mH1f72x_MAjmuJuZdjNxN3PczRxiJp0yHG374ftfzf-GvgGrv27L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709251351</pqid></control><display><type>article</type><title>Cubic Tessellations of the Helicosms</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hubard, Isabel ; Mixer, Mark ; Pellicer, Daniel ; Weiss, Asia Ivić</creator><creatorcontrib>Hubard, Isabel ; Mixer, Mark ; Pellicer, Daniel ; Weiss, Asia Ivić</creatorcontrib><description>Up to isomorphism, there are six fixed-point free crystallographic groups in Euclidean 3-space E 3 generated by twists (screw motions). In each case, an orientable 3-manifold is obtained as the quotient of E 3 by such a group. The cubic tessellation of E 3 induces tessellations on each such manifold. The corresponding classification for the 3-torus and the didicosm were classified as ‘equivelar toroids’ and ‘cubic tessellation of the didicosm’ in previous works. This paper concludes the classification of cubic tessellations on the remaining four orientable manifolds.</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-015-9721-y</identifier><identifier>CODEN: DCGEER</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classification ; Combinatorics ; Computational geometry ; Computational Mathematics and Numerical Analysis ; Crystallography ; Euclidean geometry ; Manifolds ; Mathematics ; Mathematics and Statistics ; Screws ; Tessellation ; Texts</subject><ispartof>Discrete &amp; computational geometry, 2015-10, Vol.54 (3), p.686-704</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-10ebc628944ea839c7a8cb88451ea4fff04a70b42f81e6daaa8620a4586aefa43</citedby><cites>FETCH-LOGICAL-c419t-10ebc628944ea839c7a8cb88451ea4fff04a70b42f81e6daaa8620a4586aefa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00454-015-9721-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00454-015-9721-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hubard, Isabel</creatorcontrib><creatorcontrib>Mixer, Mark</creatorcontrib><creatorcontrib>Pellicer, Daniel</creatorcontrib><creatorcontrib>Weiss, Asia Ivić</creatorcontrib><title>Cubic Tessellations of the Helicosms</title><title>Discrete &amp; computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>Up to isomorphism, there are six fixed-point free crystallographic groups in Euclidean 3-space E 3 generated by twists (screw motions). In each case, an orientable 3-manifold is obtained as the quotient of E 3 by such a group. The cubic tessellation of E 3 induces tessellations on each such manifold. The corresponding classification for the 3-torus and the didicosm were classified as ‘equivelar toroids’ and ‘cubic tessellation of the didicosm’ in previous works. This paper concludes the classification of cubic tessellations on the remaining four orientable manifolds.</description><subject>Classification</subject><subject>Combinatorics</subject><subject>Computational geometry</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Crystallography</subject><subject>Euclidean geometry</subject><subject>Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Screws</subject><subject>Tessellation</subject><subject>Texts</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10DFPwzAQBWALgUQp_AC2SDCwGO6Sc-KMqKIUqRJLmS3H2JAqTUouGfrvcRUGhMR0y_eeTk-Ia4R7BCgeGIAUSUAlyyJFeTgRM6QslUBEp2IGWJRSZUV-Li6YtxB5CXombhdjVbtk45l909ih7lpOupAMnz5Z-aZ2He_4UpwF27C_-rlz8bZ82ixWcv36_LJ4XEtHWA4SwVcuT3VJ5K3OSldY7SqtSaG3FEIAsgVUlAaNPn-31uo8BUtK59YHS9lc3E29-777Gj0PZlezO_7V-m5kg4XKFMb-PNKbP3TbjX0bv4sKylRhlFHhpFzfMfc-mH1f72x_MAjmuJuZdjNxN3PczRxiJp0yHG374ftfzf-GvgGrv27L</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Hubard, Isabel</creator><creator>Mixer, Mark</creator><creator>Pellicer, Daniel</creator><creator>Weiss, Asia Ivić</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20151001</creationdate><title>Cubic Tessellations of the Helicosms</title><author>Hubard, Isabel ; Mixer, Mark ; Pellicer, Daniel ; Weiss, Asia Ivić</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-10ebc628944ea839c7a8cb88451ea4fff04a70b42f81e6daaa8620a4586aefa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classification</topic><topic>Combinatorics</topic><topic>Computational geometry</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Crystallography</topic><topic>Euclidean geometry</topic><topic>Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Screws</topic><topic>Tessellation</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hubard, Isabel</creatorcontrib><creatorcontrib>Mixer, Mark</creatorcontrib><creatorcontrib>Pellicer, Daniel</creatorcontrib><creatorcontrib>Weiss, Asia Ivić</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete &amp; computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hubard, Isabel</au><au>Mixer, Mark</au><au>Pellicer, Daniel</au><au>Weiss, Asia Ivić</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cubic Tessellations of the Helicosms</atitle><jtitle>Discrete &amp; computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>54</volume><issue>3</issue><spage>686</spage><epage>704</epage><pages>686-704</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><coden>DCGEER</coden><abstract>Up to isomorphism, there are six fixed-point free crystallographic groups in Euclidean 3-space E 3 generated by twists (screw motions). In each case, an orientable 3-manifold is obtained as the quotient of E 3 by such a group. The cubic tessellation of E 3 induces tessellations on each such manifold. The corresponding classification for the 3-torus and the didicosm were classified as ‘equivelar toroids’ and ‘cubic tessellation of the didicosm’ in previous works. This paper concludes the classification of cubic tessellations on the remaining four orientable manifolds.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00454-015-9721-y</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0179-5376
ispartof Discrete & computational geometry, 2015-10, Vol.54 (3), p.686-704
issn 0179-5376
1432-0444
language eng
recordid cdi_proquest_miscellaneous_1753518946
source SpringerLink Journals - AutoHoldings
subjects Classification
Combinatorics
Computational geometry
Computational Mathematics and Numerical Analysis
Crystallography
Euclidean geometry
Manifolds
Mathematics
Mathematics and Statistics
Screws
Tessellation
Texts
title Cubic Tessellations of the Helicosms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cubic%20Tessellations%20of%20the%20Helicosms&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Hubard,%20Isabel&rft.date=2015-10-01&rft.volume=54&rft.issue=3&rft.spage=686&rft.epage=704&rft.pages=686-704&rft.issn=0179-5376&rft.eissn=1432-0444&rft.coden=DCGEER&rft_id=info:doi/10.1007/s00454-015-9721-y&rft_dat=%3Cproquest_cross%3E3796431171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709251351&rft_id=info:pmid/&rfr_iscdi=true