Fractal spectra in generalized Fibonacci one-dimensional magnonic quasicrystals
In this work we carry out a theoretical analysis of the spectra of magnons in quasiperiodic magnonic crystals arranged in accordance with generalized Fibonacci sequences in the exchange regime, by using a model based on a transfer-matrix method together random-phase approximation (RPA). The generali...
Gespeichert in:
Veröffentlicht in: | Journal of magnetism and magnetic materials 2012-07, Vol.324 (14), p.2315-2323 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2323 |
---|---|
container_issue | 14 |
container_start_page | 2315 |
container_title | Journal of magnetism and magnetic materials |
container_volume | 324 |
creator | Costa, C.H.O. Vasconcelos, M.S. Barbosa, P.H.R. Barbosa Filho, F.F. |
description | In this work we carry out a theoretical analysis of the spectra of magnons in quasiperiodic magnonic crystals arranged in accordance with generalized Fibonacci sequences in the exchange regime, by using a model based on a transfer-matrix method together random-phase approximation (RPA). The generalized Fibonacci sequences are characterized by an irrational parameter σ(p,q), which rules the physical properties of the system. We discussed the magnonic fractal spectra for first three generalizations, i.e., silver, bronze and nickel mean. By varying the generation number, we have found that the fragmentation process of allowed bands makes possible the emergence of new allowed magnonic bulk bands in spectra regions that were magnonic band gaps before, such as which occurs in doped semiconductor devices. This interesting property arises in one-dimensional magnonic quasicrystals fabricated in accordance to quasiperiodic sequences, without the need to introduce some deferent atomic layer or defect in the system. We also make a qualitative and quantitative investigations on these magnonic spectra by analyzing the distribution and magnitude of allowed bulk bands in function of the generalized Fibonacci number Fn and as well as how they scale as a function of the number of generations of the sequences, respectively.
► Quasiperiodic magnonic crystals are arranged in accordance with the generalized Fibonacci sequence. ► Heisenberg model in exchange regime is applied. ► We use a theoretical model based on a transfer-matrix method together random-phase approximation. ► Fractal spectra are characterized. ► We analyze the distribution of allowed bulk bands in function of the generalized Fibonacci number. |
doi_str_mv | 10.1016/j.jmmm.2012.02.123 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753518702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885312002284</els_id><sourcerecordid>1022889765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-8c5b84e73197d702f32fdcc613b03ae0cf606d7ddbcafbe878518d8867b3fcc63</originalsourceid><addsrcrecordid>eNqFkE1LAzEURbNQsFb_gKvZCG5mzEdnkoIbKVaFQje6DpmXNyXDTKZNpkL99aa0uNTVhce598Eh5I7RglFWPbZF2_d9wSnjBeUF4-KCTKigs1ypUlyR6xhbSimbqWpC1stgYDRdFrcIYzCZ89kGPQbTuW-02dLVgzcALhs85tb16KNLly7rzcYP3kG225voIBximok35LJJgbfnnJLP5cvH4i1frV_fF8-rHEpajbmCslYzlILNpZWUN4I3FqBioqbCIIWmopWV1tZgmhqVVCVTVqlK1qJJnJiSh9PuNgy7PcZR9y4Cdp3xOOyjZrIUqZKm_0cp50rNZVUmlJ9QCEOMARu9Da434ZAgfZSrW32Uq49yNeU6yU2l-_O-iWC6JhgPLv42eSm5FEol7unEYfLy5TDoCA49oHUhudd2cH-9-QGYu5L3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022889765</pqid></control><display><type>article</type><title>Fractal spectra in generalized Fibonacci one-dimensional magnonic quasicrystals</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Costa, C.H.O. ; Vasconcelos, M.S. ; Barbosa, P.H.R. ; Barbosa Filho, F.F.</creator><creatorcontrib>Costa, C.H.O. ; Vasconcelos, M.S. ; Barbosa, P.H.R. ; Barbosa Filho, F.F.</creatorcontrib><description>In this work we carry out a theoretical analysis of the spectra of magnons in quasiperiodic magnonic crystals arranged in accordance with generalized Fibonacci sequences in the exchange regime, by using a model based on a transfer-matrix method together random-phase approximation (RPA). The generalized Fibonacci sequences are characterized by an irrational parameter σ(p,q), which rules the physical properties of the system. We discussed the magnonic fractal spectra for first three generalizations, i.e., silver, bronze and nickel mean. By varying the generation number, we have found that the fragmentation process of allowed bands makes possible the emergence of new allowed magnonic bulk bands in spectra regions that were magnonic band gaps before, such as which occurs in doped semiconductor devices. This interesting property arises in one-dimensional magnonic quasicrystals fabricated in accordance to quasiperiodic sequences, without the need to introduce some deferent atomic layer or defect in the system. We also make a qualitative and quantitative investigations on these magnonic spectra by analyzing the distribution and magnitude of allowed bulk bands in function of the generalized Fibonacci number Fn and as well as how they scale as a function of the number of generations of the sequences, respectively.
► Quasiperiodic magnonic crystals are arranged in accordance with the generalized Fibonacci sequence. ► Heisenberg model in exchange regime is applied. ► We use a theoretical model based on a transfer-matrix method together random-phase approximation. ► Fractal spectra are characterized. ► We analyze the distribution of allowed bulk bands in function of the generalized Fibonacci number.</description><identifier>ISSN: 0304-8853</identifier><identifier>DOI: 10.1016/j.jmmm.2012.02.123</identifier><identifier>CODEN: JMMMDC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Band spectra ; Bands ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Energy gaps (solid state) ; Exact sciences and technology ; Fractal analysis ; Fractal spectrum ; Fractals ; Magnetic properties and materials ; Magnetically ordered materials: other intrinsic properties ; Magnonic crystal ; Mathematical models ; Physics ; Quasicrystals ; Quasiperiodic structure ; Spectra ; Spin wave ; Spin waves</subject><ispartof>Journal of magnetism and magnetic materials, 2012-07, Vol.324 (14), p.2315-2323</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-8c5b84e73197d702f32fdcc613b03ae0cf606d7ddbcafbe878518d8867b3fcc63</citedby><cites>FETCH-LOGICAL-c506t-8c5b84e73197d702f32fdcc613b03ae0cf606d7ddbcafbe878518d8867b3fcc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmmm.2012.02.123$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25727388$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Costa, C.H.O.</creatorcontrib><creatorcontrib>Vasconcelos, M.S.</creatorcontrib><creatorcontrib>Barbosa, P.H.R.</creatorcontrib><creatorcontrib>Barbosa Filho, F.F.</creatorcontrib><title>Fractal spectra in generalized Fibonacci one-dimensional magnonic quasicrystals</title><title>Journal of magnetism and magnetic materials</title><description>In this work we carry out a theoretical analysis of the spectra of magnons in quasiperiodic magnonic crystals arranged in accordance with generalized Fibonacci sequences in the exchange regime, by using a model based on a transfer-matrix method together random-phase approximation (RPA). The generalized Fibonacci sequences are characterized by an irrational parameter σ(p,q), which rules the physical properties of the system. We discussed the magnonic fractal spectra for first three generalizations, i.e., silver, bronze and nickel mean. By varying the generation number, we have found that the fragmentation process of allowed bands makes possible the emergence of new allowed magnonic bulk bands in spectra regions that were magnonic band gaps before, such as which occurs in doped semiconductor devices. This interesting property arises in one-dimensional magnonic quasicrystals fabricated in accordance to quasiperiodic sequences, without the need to introduce some deferent atomic layer or defect in the system. We also make a qualitative and quantitative investigations on these magnonic spectra by analyzing the distribution and magnitude of allowed bulk bands in function of the generalized Fibonacci number Fn and as well as how they scale as a function of the number of generations of the sequences, respectively.
► Quasiperiodic magnonic crystals are arranged in accordance with the generalized Fibonacci sequence. ► Heisenberg model in exchange regime is applied. ► We use a theoretical model based on a transfer-matrix method together random-phase approximation. ► Fractal spectra are characterized. ► We analyze the distribution of allowed bulk bands in function of the generalized Fibonacci number.</description><subject>Band spectra</subject><subject>Bands</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Energy gaps (solid state)</subject><subject>Exact sciences and technology</subject><subject>Fractal analysis</subject><subject>Fractal spectrum</subject><subject>Fractals</subject><subject>Magnetic properties and materials</subject><subject>Magnetically ordered materials: other intrinsic properties</subject><subject>Magnonic crystal</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Quasicrystals</subject><subject>Quasiperiodic structure</subject><subject>Spectra</subject><subject>Spin wave</subject><subject>Spin waves</subject><issn>0304-8853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURbNQsFb_gKvZCG5mzEdnkoIbKVaFQje6DpmXNyXDTKZNpkL99aa0uNTVhce598Eh5I7RglFWPbZF2_d9wSnjBeUF4-KCTKigs1ypUlyR6xhbSimbqWpC1stgYDRdFrcIYzCZ89kGPQbTuW-02dLVgzcALhs85tb16KNLly7rzcYP3kG225voIBximok35LJJgbfnnJLP5cvH4i1frV_fF8-rHEpajbmCslYzlILNpZWUN4I3FqBioqbCIIWmopWV1tZgmhqVVCVTVqlK1qJJnJiSh9PuNgy7PcZR9y4Cdp3xOOyjZrIUqZKm_0cp50rNZVUmlJ9QCEOMARu9Da434ZAgfZSrW32Uq49yNeU6yU2l-_O-iWC6JhgPLv42eSm5FEol7unEYfLy5TDoCA49oHUhudd2cH-9-QGYu5L3</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Costa, C.H.O.</creator><creator>Vasconcelos, M.S.</creator><creator>Barbosa, P.H.R.</creator><creator>Barbosa Filho, F.F.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7SR</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20120701</creationdate><title>Fractal spectra in generalized Fibonacci one-dimensional magnonic quasicrystals</title><author>Costa, C.H.O. ; Vasconcelos, M.S. ; Barbosa, P.H.R. ; Barbosa Filho, F.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-8c5b84e73197d702f32fdcc613b03ae0cf606d7ddbcafbe878518d8867b3fcc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Band spectra</topic><topic>Bands</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Energy gaps (solid state)</topic><topic>Exact sciences and technology</topic><topic>Fractal analysis</topic><topic>Fractal spectrum</topic><topic>Fractals</topic><topic>Magnetic properties and materials</topic><topic>Magnetically ordered materials: other intrinsic properties</topic><topic>Magnonic crystal</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Quasicrystals</topic><topic>Quasiperiodic structure</topic><topic>Spectra</topic><topic>Spin wave</topic><topic>Spin waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costa, C.H.O.</creatorcontrib><creatorcontrib>Vasconcelos, M.S.</creatorcontrib><creatorcontrib>Barbosa, P.H.R.</creatorcontrib><creatorcontrib>Barbosa Filho, F.F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costa, C.H.O.</au><au>Vasconcelos, M.S.</au><au>Barbosa, P.H.R.</au><au>Barbosa Filho, F.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractal spectra in generalized Fibonacci one-dimensional magnonic quasicrystals</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>324</volume><issue>14</issue><spage>2315</spage><epage>2323</epage><pages>2315-2323</pages><issn>0304-8853</issn><coden>JMMMDC</coden><abstract>In this work we carry out a theoretical analysis of the spectra of magnons in quasiperiodic magnonic crystals arranged in accordance with generalized Fibonacci sequences in the exchange regime, by using a model based on a transfer-matrix method together random-phase approximation (RPA). The generalized Fibonacci sequences are characterized by an irrational parameter σ(p,q), which rules the physical properties of the system. We discussed the magnonic fractal spectra for first three generalizations, i.e., silver, bronze and nickel mean. By varying the generation number, we have found that the fragmentation process of allowed bands makes possible the emergence of new allowed magnonic bulk bands in spectra regions that were magnonic band gaps before, such as which occurs in doped semiconductor devices. This interesting property arises in one-dimensional magnonic quasicrystals fabricated in accordance to quasiperiodic sequences, without the need to introduce some deferent atomic layer or defect in the system. We also make a qualitative and quantitative investigations on these magnonic spectra by analyzing the distribution and magnitude of allowed bulk bands in function of the generalized Fibonacci number Fn and as well as how they scale as a function of the number of generations of the sequences, respectively.
► Quasiperiodic magnonic crystals are arranged in accordance with the generalized Fibonacci sequence. ► Heisenberg model in exchange regime is applied. ► We use a theoretical model based on a transfer-matrix method together random-phase approximation. ► Fractal spectra are characterized. ► We analyze the distribution of allowed bulk bands in function of the generalized Fibonacci number.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2012.02.123</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-8853 |
ispartof | Journal of magnetism and magnetic materials, 2012-07, Vol.324 (14), p.2315-2323 |
issn | 0304-8853 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753518702 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Band spectra Bands Condensed matter: electronic structure, electrical, magnetic, and optical properties Energy gaps (solid state) Exact sciences and technology Fractal analysis Fractal spectrum Fractals Magnetic properties and materials Magnetically ordered materials: other intrinsic properties Magnonic crystal Mathematical models Physics Quasicrystals Quasiperiodic structure Spectra Spin wave Spin waves |
title | Fractal spectra in generalized Fibonacci one-dimensional magnonic quasicrystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-09T06%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractal%20spectra%20in%20generalized%20Fibonacci%20one-dimensional%20magnonic%20quasicrystals&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Costa,%20C.H.O.&rft.date=2012-07-01&rft.volume=324&rft.issue=14&rft.spage=2315&rft.epage=2323&rft.pages=2315-2323&rft.issn=0304-8853&rft.coden=JMMMDC&rft_id=info:doi/10.1016/j.jmmm.2012.02.123&rft_dat=%3Cproquest_cross%3E1022889765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022889765&rft_id=info:pmid/&rft_els_id=S0304885312002284&rfr_iscdi=true |