Functional Interfacing of Rhodospirillum rubrum Chromatophores to a Conducting Support for Capture and Conversion of Solar Energy

Owing to the considerable current interest in replacing fossil fuels with solar radiation as a clean, renewable, and secure energy source, light-driven electron transport in natural photosynthetic systems offers a valuable blueprint for conversion of sunlight to useful energy forms. In particular, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2013-09, Vol.117 (38), p.11249-11259
Hauptverfasser: Harrold, John W, Woronowicz, Kamil, Lamptey, Joana L, Awong, John, Baird, James, Moshar, Amir, Vittadello, Michele, Falkowski, Paul G, Niederman, Robert A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11259
container_issue 38
container_start_page 11249
container_title The journal of physical chemistry. B
container_volume 117
creator Harrold, John W
Woronowicz, Kamil
Lamptey, Joana L
Awong, John
Baird, James
Moshar, Amir
Vittadello, Michele
Falkowski, Paul G
Niederman, Robert A
description Owing to the considerable current interest in replacing fossil fuels with solar radiation as a clean, renewable, and secure energy source, light-driven electron transport in natural photosynthetic systems offers a valuable blueprint for conversion of sunlight to useful energy forms. In particular, intracytoplasmic membrane vesicles (chromatophores) from the purple bacterium Rhodospirillum rubrum provide a fully functional and robust photosynthetic apparatus, ideal for biophysical investigations of energy transduction and incorporation into biohybrid photoelectrochemical devices. These vesicular organelles, which arise by invagination of the cytoplasmic membrane, are the sites of the photochemical reaction centers and the light harvesting 1 (LH1) complex. The LH1 protein is responsible for collecting visible and near-IR radiant energy and funneling these excitations to the reaction center for conversion into a transmembrane charge separation. Here, we have investigated the morphology, fluorescence kinetics and photocurrent generation of chromatophores from Rsp. rubrum deposited directly onto gold surfaces in the absence of chemical surface modifications. Atomic force microscopy showed a significant coverage of the gold electrode surface by Rsp. rubrum chromatophores. By in situ fluorescence induction/relaxation measurements, a high retention of the quantum yield of photochemistry was demonstrated in the photoactive films. Chronoamperometric measurements showed that the assembled bioelectrodes were capable of generating sustained photocurrent under white light illumination at 220 mW/cm2 with a maximum current of 1.5 μA/cm2, which slowly declines in about 1 week. This study demonstrates the possibility of photoelectrochemical control of robust chromatophore preparations from Rsp. rubrum that paves the way for future incorporation into functional solar cells.
doi_str_mv 10.1021/jp402108s
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753516456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1437579165</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-3cc7a665e062e22752b2d6270919d3888f5e358e058c0b7c6a9ae096d4e36563</originalsourceid><addsrcrecordid>eNqN0U1v1DAQBmALgWgpHPgDyBckeliwnfgjRxS1pVIlJNp7NOtMulkldhjHSD3yz_GqS3vhwMEaH5555_Ay9l6Kz1Io-WW_1GUIl16wU6mV2JRnXx7_Rgpzwt6ktBdCaeXMa3aiKusaq8Up-32Zg1_HGGDi12FFGsCP4Z7Hgf_YxT6mZaRxmvLMKW-pjHZHcYY1LrtImPgaOfA2hj6XlLJ3m5cl0sqHSLyFZc2EHEJ_IL-QUjl0iL6NExC_CEj3D2_ZqwGmhO-O84zdXV7ctd82N9-vrtuvNxuo63rdVN5bMEajMAqVslptVW-UFY1s-so5N2istEOhnRdb6w00gKIxfY2V0aY6Y58eYxeKPzOmtZvH5HGaIGDMqZNWV1qa-n9oXVltG2l0oeeP1FNMiXDoFhpnoIdOiu7QTffUTbEfjrF5O2P_JP-WUcDHI4DkYRoIgh_Ts7PW1dLKZwc-dfuYqZSX_nHwD5Dyo0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437579165</pqid></control><display><type>article</type><title>Functional Interfacing of Rhodospirillum rubrum Chromatophores to a Conducting Support for Capture and Conversion of Solar Energy</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Harrold, John W ; Woronowicz, Kamil ; Lamptey, Joana L ; Awong, John ; Baird, James ; Moshar, Amir ; Vittadello, Michele ; Falkowski, Paul G ; Niederman, Robert A</creator><creatorcontrib>Harrold, John W ; Woronowicz, Kamil ; Lamptey, Joana L ; Awong, John ; Baird, James ; Moshar, Amir ; Vittadello, Michele ; Falkowski, Paul G ; Niederman, Robert A</creatorcontrib><description>Owing to the considerable current interest in replacing fossil fuels with solar radiation as a clean, renewable, and secure energy source, light-driven electron transport in natural photosynthetic systems offers a valuable blueprint for conversion of sunlight to useful energy forms. In particular, intracytoplasmic membrane vesicles (chromatophores) from the purple bacterium Rhodospirillum rubrum provide a fully functional and robust photosynthetic apparatus, ideal for biophysical investigations of energy transduction and incorporation into biohybrid photoelectrochemical devices. These vesicular organelles, which arise by invagination of the cytoplasmic membrane, are the sites of the photochemical reaction centers and the light harvesting 1 (LH1) complex. The LH1 protein is responsible for collecting visible and near-IR radiant energy and funneling these excitations to the reaction center for conversion into a transmembrane charge separation. Here, we have investigated the morphology, fluorescence kinetics and photocurrent generation of chromatophores from Rsp. rubrum deposited directly onto gold surfaces in the absence of chemical surface modifications. Atomic force microscopy showed a significant coverage of the gold electrode surface by Rsp. rubrum chromatophores. By in situ fluorescence induction/relaxation measurements, a high retention of the quantum yield of photochemistry was demonstrated in the photoactive films. Chronoamperometric measurements showed that the assembled bioelectrodes were capable of generating sustained photocurrent under white light illumination at 220 mW/cm2 with a maximum current of 1.5 μA/cm2, which slowly declines in about 1 week. This study demonstrates the possibility of photoelectrochemical control of robust chromatophore preparations from Rsp. rubrum that paves the way for future incorporation into functional solar cells.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp402108s</identifier><identifier>PMID: 23789750</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Bacterial Chromatophores - chemistry ; Bacterial Chromatophores - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Conversion ; Cytochromes c - chemistry ; Direct power generation ; Electrochemical Techniques ; Electrodes ; Energy ; Exact sciences and technology ; Fluorescence ; Fossil fuels ; Gold ; Gold - chemistry ; Light-Harvesting Protein Complexes - chemistry ; Light-Harvesting Protein Complexes - metabolism ; Membranes ; Microscopy, Atomic Force ; Natural energy ; Photocurrent ; Photoelectric effect ; Photovoltaic conversion ; Quantum Theory ; Rhodospirillum rubrum - metabolism ; Solar cells. Photoelectrochemical cells ; Solar Energy ; Spectrometry, Fluorescence</subject><ispartof>The journal of physical chemistry. B, 2013-09, Vol.117 (38), p.11249-11259</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-3cc7a665e062e22752b2d6270919d3888f5e358e058c0b7c6a9ae096d4e36563</citedby><cites>FETCH-LOGICAL-a444t-3cc7a665e062e22752b2d6270919d3888f5e358e058c0b7c6a9ae096d4e36563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp402108s$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp402108s$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27784171$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23789750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harrold, John W</creatorcontrib><creatorcontrib>Woronowicz, Kamil</creatorcontrib><creatorcontrib>Lamptey, Joana L</creatorcontrib><creatorcontrib>Awong, John</creatorcontrib><creatorcontrib>Baird, James</creatorcontrib><creatorcontrib>Moshar, Amir</creatorcontrib><creatorcontrib>Vittadello, Michele</creatorcontrib><creatorcontrib>Falkowski, Paul G</creatorcontrib><creatorcontrib>Niederman, Robert A</creatorcontrib><title>Functional Interfacing of Rhodospirillum rubrum Chromatophores to a Conducting Support for Capture and Conversion of Solar Energy</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Owing to the considerable current interest in replacing fossil fuels with solar radiation as a clean, renewable, and secure energy source, light-driven electron transport in natural photosynthetic systems offers a valuable blueprint for conversion of sunlight to useful energy forms. In particular, intracytoplasmic membrane vesicles (chromatophores) from the purple bacterium Rhodospirillum rubrum provide a fully functional and robust photosynthetic apparatus, ideal for biophysical investigations of energy transduction and incorporation into biohybrid photoelectrochemical devices. These vesicular organelles, which arise by invagination of the cytoplasmic membrane, are the sites of the photochemical reaction centers and the light harvesting 1 (LH1) complex. The LH1 protein is responsible for collecting visible and near-IR radiant energy and funneling these excitations to the reaction center for conversion into a transmembrane charge separation. Here, we have investigated the morphology, fluorescence kinetics and photocurrent generation of chromatophores from Rsp. rubrum deposited directly onto gold surfaces in the absence of chemical surface modifications. Atomic force microscopy showed a significant coverage of the gold electrode surface by Rsp. rubrum chromatophores. By in situ fluorescence induction/relaxation measurements, a high retention of the quantum yield of photochemistry was demonstrated in the photoactive films. Chronoamperometric measurements showed that the assembled bioelectrodes were capable of generating sustained photocurrent under white light illumination at 220 mW/cm2 with a maximum current of 1.5 μA/cm2, which slowly declines in about 1 week. This study demonstrates the possibility of photoelectrochemical control of robust chromatophore preparations from Rsp. rubrum that paves the way for future incorporation into functional solar cells.</description><subject>Applied sciences</subject><subject>Bacterial Chromatophores - chemistry</subject><subject>Bacterial Chromatophores - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Conversion</subject><subject>Cytochromes c - chemistry</subject><subject>Direct power generation</subject><subject>Electrochemical Techniques</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fluorescence</subject><subject>Fossil fuels</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Light-Harvesting Protein Complexes - chemistry</subject><subject>Light-Harvesting Protein Complexes - metabolism</subject><subject>Membranes</subject><subject>Microscopy, Atomic Force</subject><subject>Natural energy</subject><subject>Photocurrent</subject><subject>Photoelectric effect</subject><subject>Photovoltaic conversion</subject><subject>Quantum Theory</subject><subject>Rhodospirillum rubrum - metabolism</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar Energy</subject><subject>Spectrometry, Fluorescence</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0U1v1DAQBmALgWgpHPgDyBckeliwnfgjRxS1pVIlJNp7NOtMulkldhjHSD3yz_GqS3vhwMEaH5555_Ay9l6Kz1Io-WW_1GUIl16wU6mV2JRnXx7_Rgpzwt6ktBdCaeXMa3aiKusaq8Up-32Zg1_HGGDi12FFGsCP4Z7Hgf_YxT6mZaRxmvLMKW-pjHZHcYY1LrtImPgaOfA2hj6XlLJ3m5cl0sqHSLyFZc2EHEJ_IL-QUjl0iL6NExC_CEj3D2_ZqwGmhO-O84zdXV7ctd82N9-vrtuvNxuo63rdVN5bMEajMAqVslptVW-UFY1s-so5N2istEOhnRdb6w00gKIxfY2V0aY6Y58eYxeKPzOmtZvH5HGaIGDMqZNWV1qa-n9oXVltG2l0oeeP1FNMiXDoFhpnoIdOiu7QTffUTbEfjrF5O2P_JP-WUcDHI4DkYRoIgh_Ts7PW1dLKZwc-dfuYqZSX_nHwD5Dyo0o</recordid><startdate>20130926</startdate><enddate>20130926</enddate><creator>Harrold, John W</creator><creator>Woronowicz, Kamil</creator><creator>Lamptey, Joana L</creator><creator>Awong, John</creator><creator>Baird, James</creator><creator>Moshar, Amir</creator><creator>Vittadello, Michele</creator><creator>Falkowski, Paul G</creator><creator>Niederman, Robert A</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130926</creationdate><title>Functional Interfacing of Rhodospirillum rubrum Chromatophores to a Conducting Support for Capture and Conversion of Solar Energy</title><author>Harrold, John W ; Woronowicz, Kamil ; Lamptey, Joana L ; Awong, John ; Baird, James ; Moshar, Amir ; Vittadello, Michele ; Falkowski, Paul G ; Niederman, Robert A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-3cc7a665e062e22752b2d6270919d3888f5e358e058c0b7c6a9ae096d4e36563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Bacterial Chromatophores - chemistry</topic><topic>Bacterial Chromatophores - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Conversion</topic><topic>Cytochromes c - chemistry</topic><topic>Direct power generation</topic><topic>Electrochemical Techniques</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fluorescence</topic><topic>Fossil fuels</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Light-Harvesting Protein Complexes - chemistry</topic><topic>Light-Harvesting Protein Complexes - metabolism</topic><topic>Membranes</topic><topic>Microscopy, Atomic Force</topic><topic>Natural energy</topic><topic>Photocurrent</topic><topic>Photoelectric effect</topic><topic>Photovoltaic conversion</topic><topic>Quantum Theory</topic><topic>Rhodospirillum rubrum - metabolism</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar Energy</topic><topic>Spectrometry, Fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harrold, John W</creatorcontrib><creatorcontrib>Woronowicz, Kamil</creatorcontrib><creatorcontrib>Lamptey, Joana L</creatorcontrib><creatorcontrib>Awong, John</creatorcontrib><creatorcontrib>Baird, James</creatorcontrib><creatorcontrib>Moshar, Amir</creatorcontrib><creatorcontrib>Vittadello, Michele</creatorcontrib><creatorcontrib>Falkowski, Paul G</creatorcontrib><creatorcontrib>Niederman, Robert A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harrold, John W</au><au>Woronowicz, Kamil</au><au>Lamptey, Joana L</au><au>Awong, John</au><au>Baird, James</au><au>Moshar, Amir</au><au>Vittadello, Michele</au><au>Falkowski, Paul G</au><au>Niederman, Robert A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Interfacing of Rhodospirillum rubrum Chromatophores to a Conducting Support for Capture and Conversion of Solar Energy</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2013-09-26</date><risdate>2013</risdate><volume>117</volume><issue>38</issue><spage>11249</spage><epage>11259</epage><pages>11249-11259</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Owing to the considerable current interest in replacing fossil fuels with solar radiation as a clean, renewable, and secure energy source, light-driven electron transport in natural photosynthetic systems offers a valuable blueprint for conversion of sunlight to useful energy forms. In particular, intracytoplasmic membrane vesicles (chromatophores) from the purple bacterium Rhodospirillum rubrum provide a fully functional and robust photosynthetic apparatus, ideal for biophysical investigations of energy transduction and incorporation into biohybrid photoelectrochemical devices. These vesicular organelles, which arise by invagination of the cytoplasmic membrane, are the sites of the photochemical reaction centers and the light harvesting 1 (LH1) complex. The LH1 protein is responsible for collecting visible and near-IR radiant energy and funneling these excitations to the reaction center for conversion into a transmembrane charge separation. Here, we have investigated the morphology, fluorescence kinetics and photocurrent generation of chromatophores from Rsp. rubrum deposited directly onto gold surfaces in the absence of chemical surface modifications. Atomic force microscopy showed a significant coverage of the gold electrode surface by Rsp. rubrum chromatophores. By in situ fluorescence induction/relaxation measurements, a high retention of the quantum yield of photochemistry was demonstrated in the photoactive films. Chronoamperometric measurements showed that the assembled bioelectrodes were capable of generating sustained photocurrent under white light illumination at 220 mW/cm2 with a maximum current of 1.5 μA/cm2, which slowly declines in about 1 week. This study demonstrates the possibility of photoelectrochemical control of robust chromatophore preparations from Rsp. rubrum that paves the way for future incorporation into functional solar cells.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23789750</pmid><doi>10.1021/jp402108s</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2013-09, Vol.117 (38), p.11249-11259
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_1753516456
source MEDLINE; American Chemical Society Journals
subjects Applied sciences
Bacterial Chromatophores - chemistry
Bacterial Chromatophores - metabolism
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Conversion
Cytochromes c - chemistry
Direct power generation
Electrochemical Techniques
Electrodes
Energy
Exact sciences and technology
Fluorescence
Fossil fuels
Gold
Gold - chemistry
Light-Harvesting Protein Complexes - chemistry
Light-Harvesting Protein Complexes - metabolism
Membranes
Microscopy, Atomic Force
Natural energy
Photocurrent
Photoelectric effect
Photovoltaic conversion
Quantum Theory
Rhodospirillum rubrum - metabolism
Solar cells. Photoelectrochemical cells
Solar Energy
Spectrometry, Fluorescence
title Functional Interfacing of Rhodospirillum rubrum Chromatophores to a Conducting Support for Capture and Conversion of Solar Energy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A44%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Interfacing%20of%20Rhodospirillum%20rubrum%20Chromatophores%20to%20a%20Conducting%20Support%20for%20Capture%20and%20Conversion%20of%20Solar%20Energy&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Harrold,%20John%20W&rft.date=2013-09-26&rft.volume=117&rft.issue=38&rft.spage=11249&rft.epage=11259&rft.pages=11249-11259&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp402108s&rft_dat=%3Cproquest_cross%3E1437579165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437579165&rft_id=info:pmid/23789750&rfr_iscdi=true