Functional Interfacing of Rhodospirillum rubrum Chromatophores to a Conducting Support for Capture and Conversion of Solar Energy
Owing to the considerable current interest in replacing fossil fuels with solar radiation as a clean, renewable, and secure energy source, light-driven electron transport in natural photosynthetic systems offers a valuable blueprint for conversion of sunlight to useful energy forms. In particular, i...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2013-09, Vol.117 (38), p.11249-11259 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11259 |
---|---|
container_issue | 38 |
container_start_page | 11249 |
container_title | The journal of physical chemistry. B |
container_volume | 117 |
creator | Harrold, John W Woronowicz, Kamil Lamptey, Joana L Awong, John Baird, James Moshar, Amir Vittadello, Michele Falkowski, Paul G Niederman, Robert A |
description | Owing to the considerable current interest in replacing fossil fuels with solar radiation as a clean, renewable, and secure energy source, light-driven electron transport in natural photosynthetic systems offers a valuable blueprint for conversion of sunlight to useful energy forms. In particular, intracytoplasmic membrane vesicles (chromatophores) from the purple bacterium Rhodospirillum rubrum provide a fully functional and robust photosynthetic apparatus, ideal for biophysical investigations of energy transduction and incorporation into biohybrid photoelectrochemical devices. These vesicular organelles, which arise by invagination of the cytoplasmic membrane, are the sites of the photochemical reaction centers and the light harvesting 1 (LH1) complex. The LH1 protein is responsible for collecting visible and near-IR radiant energy and funneling these excitations to the reaction center for conversion into a transmembrane charge separation. Here, we have investigated the morphology, fluorescence kinetics and photocurrent generation of chromatophores from Rsp. rubrum deposited directly onto gold surfaces in the absence of chemical surface modifications. Atomic force microscopy showed a significant coverage of the gold electrode surface by Rsp. rubrum chromatophores. By in situ fluorescence induction/relaxation measurements, a high retention of the quantum yield of photochemistry was demonstrated in the photoactive films. Chronoamperometric measurements showed that the assembled bioelectrodes were capable of generating sustained photocurrent under white light illumination at 220 mW/cm2 with a maximum current of 1.5 μA/cm2, which slowly declines in about 1 week. This study demonstrates the possibility of photoelectrochemical control of robust chromatophore preparations from Rsp. rubrum that paves the way for future incorporation into functional solar cells. |
doi_str_mv | 10.1021/jp402108s |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753516456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1437579165</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-3cc7a665e062e22752b2d6270919d3888f5e358e058c0b7c6a9ae096d4e36563</originalsourceid><addsrcrecordid>eNqN0U1v1DAQBmALgWgpHPgDyBckeliwnfgjRxS1pVIlJNp7NOtMulkldhjHSD3yz_GqS3vhwMEaH5555_Ay9l6Kz1Io-WW_1GUIl16wU6mV2JRnXx7_Rgpzwt6ktBdCaeXMa3aiKusaq8Up-32Zg1_HGGDi12FFGsCP4Z7Hgf_YxT6mZaRxmvLMKW-pjHZHcYY1LrtImPgaOfA2hj6XlLJ3m5cl0sqHSLyFZc2EHEJ_IL-QUjl0iL6NExC_CEj3D2_ZqwGmhO-O84zdXV7ctd82N9-vrtuvNxuo63rdVN5bMEajMAqVslptVW-UFY1s-so5N2istEOhnRdb6w00gKIxfY2V0aY6Y58eYxeKPzOmtZvH5HGaIGDMqZNWV1qa-n9oXVltG2l0oeeP1FNMiXDoFhpnoIdOiu7QTffUTbEfjrF5O2P_JP-WUcDHI4DkYRoIgh_Ts7PW1dLKZwc-dfuYqZSX_nHwD5Dyo0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437579165</pqid></control><display><type>article</type><title>Functional Interfacing of Rhodospirillum rubrum Chromatophores to a Conducting Support for Capture and Conversion of Solar Energy</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Harrold, John W ; Woronowicz, Kamil ; Lamptey, Joana L ; Awong, John ; Baird, James ; Moshar, Amir ; Vittadello, Michele ; Falkowski, Paul G ; Niederman, Robert A</creator><creatorcontrib>Harrold, John W ; Woronowicz, Kamil ; Lamptey, Joana L ; Awong, John ; Baird, James ; Moshar, Amir ; Vittadello, Michele ; Falkowski, Paul G ; Niederman, Robert A</creatorcontrib><description>Owing to the considerable current interest in replacing fossil fuels with solar radiation as a clean, renewable, and secure energy source, light-driven electron transport in natural photosynthetic systems offers a valuable blueprint for conversion of sunlight to useful energy forms. In particular, intracytoplasmic membrane vesicles (chromatophores) from the purple bacterium Rhodospirillum rubrum provide a fully functional and robust photosynthetic apparatus, ideal for biophysical investigations of energy transduction and incorporation into biohybrid photoelectrochemical devices. These vesicular organelles, which arise by invagination of the cytoplasmic membrane, are the sites of the photochemical reaction centers and the light harvesting 1 (LH1) complex. The LH1 protein is responsible for collecting visible and near-IR radiant energy and funneling these excitations to the reaction center for conversion into a transmembrane charge separation. Here, we have investigated the morphology, fluorescence kinetics and photocurrent generation of chromatophores from Rsp. rubrum deposited directly onto gold surfaces in the absence of chemical surface modifications. Atomic force microscopy showed a significant coverage of the gold electrode surface by Rsp. rubrum chromatophores. By in situ fluorescence induction/relaxation measurements, a high retention of the quantum yield of photochemistry was demonstrated in the photoactive films. Chronoamperometric measurements showed that the assembled bioelectrodes were capable of generating sustained photocurrent under white light illumination at 220 mW/cm2 with a maximum current of 1.5 μA/cm2, which slowly declines in about 1 week. This study demonstrates the possibility of photoelectrochemical control of robust chromatophore preparations from Rsp. rubrum that paves the way for future incorporation into functional solar cells.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp402108s</identifier><identifier>PMID: 23789750</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Bacterial Chromatophores - chemistry ; Bacterial Chromatophores - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Conversion ; Cytochromes c - chemistry ; Direct power generation ; Electrochemical Techniques ; Electrodes ; Energy ; Exact sciences and technology ; Fluorescence ; Fossil fuels ; Gold ; Gold - chemistry ; Light-Harvesting Protein Complexes - chemistry ; Light-Harvesting Protein Complexes - metabolism ; Membranes ; Microscopy, Atomic Force ; Natural energy ; Photocurrent ; Photoelectric effect ; Photovoltaic conversion ; Quantum Theory ; Rhodospirillum rubrum - metabolism ; Solar cells. Photoelectrochemical cells ; Solar Energy ; Spectrometry, Fluorescence</subject><ispartof>The journal of physical chemistry. B, 2013-09, Vol.117 (38), p.11249-11259</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-3cc7a665e062e22752b2d6270919d3888f5e358e058c0b7c6a9ae096d4e36563</citedby><cites>FETCH-LOGICAL-a444t-3cc7a665e062e22752b2d6270919d3888f5e358e058c0b7c6a9ae096d4e36563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp402108s$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp402108s$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27784171$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23789750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harrold, John W</creatorcontrib><creatorcontrib>Woronowicz, Kamil</creatorcontrib><creatorcontrib>Lamptey, Joana L</creatorcontrib><creatorcontrib>Awong, John</creatorcontrib><creatorcontrib>Baird, James</creatorcontrib><creatorcontrib>Moshar, Amir</creatorcontrib><creatorcontrib>Vittadello, Michele</creatorcontrib><creatorcontrib>Falkowski, Paul G</creatorcontrib><creatorcontrib>Niederman, Robert A</creatorcontrib><title>Functional Interfacing of Rhodospirillum rubrum Chromatophores to a Conducting Support for Capture and Conversion of Solar Energy</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Owing to the considerable current interest in replacing fossil fuels with solar radiation as a clean, renewable, and secure energy source, light-driven electron transport in natural photosynthetic systems offers a valuable blueprint for conversion of sunlight to useful energy forms. In particular, intracytoplasmic membrane vesicles (chromatophores) from the purple bacterium Rhodospirillum rubrum provide a fully functional and robust photosynthetic apparatus, ideal for biophysical investigations of energy transduction and incorporation into biohybrid photoelectrochemical devices. These vesicular organelles, which arise by invagination of the cytoplasmic membrane, are the sites of the photochemical reaction centers and the light harvesting 1 (LH1) complex. The LH1 protein is responsible for collecting visible and near-IR radiant energy and funneling these excitations to the reaction center for conversion into a transmembrane charge separation. Here, we have investigated the morphology, fluorescence kinetics and photocurrent generation of chromatophores from Rsp. rubrum deposited directly onto gold surfaces in the absence of chemical surface modifications. Atomic force microscopy showed a significant coverage of the gold electrode surface by Rsp. rubrum chromatophores. By in situ fluorescence induction/relaxation measurements, a high retention of the quantum yield of photochemistry was demonstrated in the photoactive films. Chronoamperometric measurements showed that the assembled bioelectrodes were capable of generating sustained photocurrent under white light illumination at 220 mW/cm2 with a maximum current of 1.5 μA/cm2, which slowly declines in about 1 week. This study demonstrates the possibility of photoelectrochemical control of robust chromatophore preparations from Rsp. rubrum that paves the way for future incorporation into functional solar cells.</description><subject>Applied sciences</subject><subject>Bacterial Chromatophores - chemistry</subject><subject>Bacterial Chromatophores - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Conversion</subject><subject>Cytochromes c - chemistry</subject><subject>Direct power generation</subject><subject>Electrochemical Techniques</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fluorescence</subject><subject>Fossil fuels</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Light-Harvesting Protein Complexes - chemistry</subject><subject>Light-Harvesting Protein Complexes - metabolism</subject><subject>Membranes</subject><subject>Microscopy, Atomic Force</subject><subject>Natural energy</subject><subject>Photocurrent</subject><subject>Photoelectric effect</subject><subject>Photovoltaic conversion</subject><subject>Quantum Theory</subject><subject>Rhodospirillum rubrum - metabolism</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar Energy</subject><subject>Spectrometry, Fluorescence</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0U1v1DAQBmALgWgpHPgDyBckeliwnfgjRxS1pVIlJNp7NOtMulkldhjHSD3yz_GqS3vhwMEaH5555_Ay9l6Kz1Io-WW_1GUIl16wU6mV2JRnXx7_Rgpzwt6ktBdCaeXMa3aiKusaq8Up-32Zg1_HGGDi12FFGsCP4Z7Hgf_YxT6mZaRxmvLMKW-pjHZHcYY1LrtImPgaOfA2hj6XlLJ3m5cl0sqHSLyFZc2EHEJ_IL-QUjl0iL6NExC_CEj3D2_ZqwGmhO-O84zdXV7ctd82N9-vrtuvNxuo63rdVN5bMEajMAqVslptVW-UFY1s-so5N2istEOhnRdb6w00gKIxfY2V0aY6Y58eYxeKPzOmtZvH5HGaIGDMqZNWV1qa-n9oXVltG2l0oeeP1FNMiXDoFhpnoIdOiu7QTffUTbEfjrF5O2P_JP-WUcDHI4DkYRoIgh_Ts7PW1dLKZwc-dfuYqZSX_nHwD5Dyo0o</recordid><startdate>20130926</startdate><enddate>20130926</enddate><creator>Harrold, John W</creator><creator>Woronowicz, Kamil</creator><creator>Lamptey, Joana L</creator><creator>Awong, John</creator><creator>Baird, James</creator><creator>Moshar, Amir</creator><creator>Vittadello, Michele</creator><creator>Falkowski, Paul G</creator><creator>Niederman, Robert A</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130926</creationdate><title>Functional Interfacing of Rhodospirillum rubrum Chromatophores to a Conducting Support for Capture and Conversion of Solar Energy</title><author>Harrold, John W ; Woronowicz, Kamil ; Lamptey, Joana L ; Awong, John ; Baird, James ; Moshar, Amir ; Vittadello, Michele ; Falkowski, Paul G ; Niederman, Robert A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-3cc7a665e062e22752b2d6270919d3888f5e358e058c0b7c6a9ae096d4e36563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Bacterial Chromatophores - chemistry</topic><topic>Bacterial Chromatophores - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Conversion</topic><topic>Cytochromes c - chemistry</topic><topic>Direct power generation</topic><topic>Electrochemical Techniques</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fluorescence</topic><topic>Fossil fuels</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Light-Harvesting Protein Complexes - chemistry</topic><topic>Light-Harvesting Protein Complexes - metabolism</topic><topic>Membranes</topic><topic>Microscopy, Atomic Force</topic><topic>Natural energy</topic><topic>Photocurrent</topic><topic>Photoelectric effect</topic><topic>Photovoltaic conversion</topic><topic>Quantum Theory</topic><topic>Rhodospirillum rubrum - metabolism</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar Energy</topic><topic>Spectrometry, Fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harrold, John W</creatorcontrib><creatorcontrib>Woronowicz, Kamil</creatorcontrib><creatorcontrib>Lamptey, Joana L</creatorcontrib><creatorcontrib>Awong, John</creatorcontrib><creatorcontrib>Baird, James</creatorcontrib><creatorcontrib>Moshar, Amir</creatorcontrib><creatorcontrib>Vittadello, Michele</creatorcontrib><creatorcontrib>Falkowski, Paul G</creatorcontrib><creatorcontrib>Niederman, Robert A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harrold, John W</au><au>Woronowicz, Kamil</au><au>Lamptey, Joana L</au><au>Awong, John</au><au>Baird, James</au><au>Moshar, Amir</au><au>Vittadello, Michele</au><au>Falkowski, Paul G</au><au>Niederman, Robert A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Interfacing of Rhodospirillum rubrum Chromatophores to a Conducting Support for Capture and Conversion of Solar Energy</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2013-09-26</date><risdate>2013</risdate><volume>117</volume><issue>38</issue><spage>11249</spage><epage>11259</epage><pages>11249-11259</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Owing to the considerable current interest in replacing fossil fuels with solar radiation as a clean, renewable, and secure energy source, light-driven electron transport in natural photosynthetic systems offers a valuable blueprint for conversion of sunlight to useful energy forms. In particular, intracytoplasmic membrane vesicles (chromatophores) from the purple bacterium Rhodospirillum rubrum provide a fully functional and robust photosynthetic apparatus, ideal for biophysical investigations of energy transduction and incorporation into biohybrid photoelectrochemical devices. These vesicular organelles, which arise by invagination of the cytoplasmic membrane, are the sites of the photochemical reaction centers and the light harvesting 1 (LH1) complex. The LH1 protein is responsible for collecting visible and near-IR radiant energy and funneling these excitations to the reaction center for conversion into a transmembrane charge separation. Here, we have investigated the morphology, fluorescence kinetics and photocurrent generation of chromatophores from Rsp. rubrum deposited directly onto gold surfaces in the absence of chemical surface modifications. Atomic force microscopy showed a significant coverage of the gold electrode surface by Rsp. rubrum chromatophores. By in situ fluorescence induction/relaxation measurements, a high retention of the quantum yield of photochemistry was demonstrated in the photoactive films. Chronoamperometric measurements showed that the assembled bioelectrodes were capable of generating sustained photocurrent under white light illumination at 220 mW/cm2 with a maximum current of 1.5 μA/cm2, which slowly declines in about 1 week. This study demonstrates the possibility of photoelectrochemical control of robust chromatophore preparations from Rsp. rubrum that paves the way for future incorporation into functional solar cells.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23789750</pmid><doi>10.1021/jp402108s</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2013-09, Vol.117 (38), p.11249-11259 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753516456 |
source | MEDLINE; American Chemical Society Journals |
subjects | Applied sciences Bacterial Chromatophores - chemistry Bacterial Chromatophores - metabolism Bacterial Proteins - chemistry Bacterial Proteins - metabolism Conversion Cytochromes c - chemistry Direct power generation Electrochemical Techniques Electrodes Energy Exact sciences and technology Fluorescence Fossil fuels Gold Gold - chemistry Light-Harvesting Protein Complexes - chemistry Light-Harvesting Protein Complexes - metabolism Membranes Microscopy, Atomic Force Natural energy Photocurrent Photoelectric effect Photovoltaic conversion Quantum Theory Rhodospirillum rubrum - metabolism Solar cells. Photoelectrochemical cells Solar Energy Spectrometry, Fluorescence |
title | Functional Interfacing of Rhodospirillum rubrum Chromatophores to a Conducting Support for Capture and Conversion of Solar Energy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A44%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Interfacing%20of%20Rhodospirillum%20rubrum%20Chromatophores%20to%20a%20Conducting%20Support%20for%20Capture%20and%20Conversion%20of%20Solar%20Energy&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Harrold,%20John%20W&rft.date=2013-09-26&rft.volume=117&rft.issue=38&rft.spage=11249&rft.epage=11259&rft.pages=11249-11259&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp402108s&rft_dat=%3Cproquest_cross%3E1437579165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437579165&rft_id=info:pmid/23789750&rfr_iscdi=true |