Cylindrical effects in weakly nonlinear Rayleigh Taylor instability

The classical Rayleigh–Taylor instability(RTI) at the interface between two variable density fluids in the cylindrical geometry is explicitly investigated by the formal perturbation method up to the second order. Two styles of RTI, convergent(i.e., gravity pointing inward) and divergent(i.e., gravit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2015, Vol.24 (1), p.388-393
1. Verfasser: 刘万海 马文芳 王绪林
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 393
container_issue 1
container_start_page 388
container_title Chinese physics B
container_volume 24
creator 刘万海 马文芳 王绪林
description The classical Rayleigh–Taylor instability(RTI) at the interface between two variable density fluids in the cylindrical geometry is explicitly investigated by the formal perturbation method up to the second order. Two styles of RTI, convergent(i.e., gravity pointing inward) and divergent(i.e., gravity pointing outwards) configurations, compared with RTI in Cartesian geometry, are taken into account. Our explicit results show that the interface function in the cylindrical geometry consists of two parts: oscillatory part similar to the result of the Cartesian geometry, and non-oscillatory one contributing nothing to the result of the Cartesian geometry. The velocity resulting only from the non-oscillatory term is followed with interest in this paper. It is found that both the convergent and the divergent configurations have the same zeroth-order velocity, whose magnitude increases with the Atwood number, while decreases with the initial radius of the interface or mode number. The occurrence of non-oscillation terms is an essential character of the RTI in the cylindrical geometry different from Cartesian one.
doi_str_mv 10.1088/1674-1056/24/1/015202
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753515510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>663382121</cqvip_id><sourcerecordid>1753515510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-5c636a0a600be715720a79e1e2a394608cc1d14f3003526cccda4f9996f58b0d3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QSheeVN7TtKk7aUUv2AgyLwOaZpu0Szdkg7pv7djY1fvC-d5z8VDyD3CE0JZZiiKPEXgIqN5hhkgp0AvyIwCL1NWsvySzM7MNbmJ8QdAIFA2I3U9OuvbYLVyiek6o4eYWJ_8GfXrxsT3fjobFZIvNTpjV-tkOZU-TEwcVGOdHcZbctUpF83dKefk-_VlWb-ni8-3j_p5kWqGbEi5FkwoUAKgMQXygoIqKoOGKlblAkqtscW8YwCMU6G1blXeVVUlOl420LI5eTz-3YZ-tzdxkBsbtXFOedPvo8SCM46cI0woP6I69DEG08ltsBsVRokgD9LkQYg8CJF0SnmUNu0eTrt171c761fnoRCMlRQpsn9dJmpn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753515510</pqid></control><display><type>article</type><title>Cylindrical effects in weakly nonlinear Rayleigh Taylor instability</title><source>IOP Publishing Journals</source><creator>刘万海 马文芳 王绪林</creator><creatorcontrib>刘万海 马文芳 王绪林</creatorcontrib><description>The classical Rayleigh–Taylor instability(RTI) at the interface between two variable density fluids in the cylindrical geometry is explicitly investigated by the formal perturbation method up to the second order. Two styles of RTI, convergent(i.e., gravity pointing inward) and divergent(i.e., gravity pointing outwards) configurations, compared with RTI in Cartesian geometry, are taken into account. Our explicit results show that the interface function in the cylindrical geometry consists of two parts: oscillatory part similar to the result of the Cartesian geometry, and non-oscillatory one contributing nothing to the result of the Cartesian geometry. The velocity resulting only from the non-oscillatory term is followed with interest in this paper. It is found that both the convergent and the divergent configurations have the same zeroth-order velocity, whose magnitude increases with the Atwood number, while decreases with the initial radius of the interface or mode number. The occurrence of non-oscillation terms is an essential character of the RTI in the cylindrical geometry different from Cartesian one.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>EISSN: 1741-4199</identifier><identifier>DOI: 10.1088/1674-1056/24/1/015202</identifier><language>eng</language><subject>Cartesian ; Density ; Fluid dynamics ; Fluid flow ; Fluids ; Gravitation ; Perturbation methods ; Rayleigh-Taylor instability ; 不稳定性 ; 几何形状 ; 圆柱 ; 弱非线性 ; 振荡条件 ; 接口功能 ; 泰勒 ; 瑞利</subject><ispartof>Chinese physics B, 2015, Vol.24 (1), p.388-393</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-5c636a0a600be715720a79e1e2a394608cc1d14f3003526cccda4f9996f58b0d3</citedby><cites>FETCH-LOGICAL-c313t-5c636a0a600be715720a79e1e2a394608cc1d14f3003526cccda4f9996f58b0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>刘万海 马文芳 王绪林</creatorcontrib><title>Cylindrical effects in weakly nonlinear Rayleigh Taylor instability</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>The classical Rayleigh–Taylor instability(RTI) at the interface between two variable density fluids in the cylindrical geometry is explicitly investigated by the formal perturbation method up to the second order. Two styles of RTI, convergent(i.e., gravity pointing inward) and divergent(i.e., gravity pointing outwards) configurations, compared with RTI in Cartesian geometry, are taken into account. Our explicit results show that the interface function in the cylindrical geometry consists of two parts: oscillatory part similar to the result of the Cartesian geometry, and non-oscillatory one contributing nothing to the result of the Cartesian geometry. The velocity resulting only from the non-oscillatory term is followed with interest in this paper. It is found that both the convergent and the divergent configurations have the same zeroth-order velocity, whose magnitude increases with the Atwood number, while decreases with the initial radius of the interface or mode number. The occurrence of non-oscillation terms is an essential character of the RTI in the cylindrical geometry different from Cartesian one.</description><subject>Cartesian</subject><subject>Density</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Gravitation</subject><subject>Perturbation methods</subject><subject>Rayleigh-Taylor instability</subject><subject>不稳定性</subject><subject>几何形状</subject><subject>圆柱</subject><subject>弱非线性</subject><subject>振荡条件</subject><subject>接口功能</subject><subject>泰勒</subject><subject>瑞利</subject><issn>1674-1056</issn><issn>2058-3834</issn><issn>1741-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKc_QSheeVN7TtKk7aUUv2AgyLwOaZpu0Szdkg7pv7djY1fvC-d5z8VDyD3CE0JZZiiKPEXgIqN5hhkgp0AvyIwCL1NWsvySzM7MNbmJ8QdAIFA2I3U9OuvbYLVyiek6o4eYWJ_8GfXrxsT3fjobFZIvNTpjV-tkOZU-TEwcVGOdHcZbctUpF83dKefk-_VlWb-ni8-3j_p5kWqGbEi5FkwoUAKgMQXygoIqKoOGKlblAkqtscW8YwCMU6G1blXeVVUlOl420LI5eTz-3YZ-tzdxkBsbtXFOedPvo8SCM46cI0woP6I69DEG08ltsBsVRokgD9LkQYg8CJF0SnmUNu0eTrt171c761fnoRCMlRQpsn9dJmpn</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>刘万海 马文芳 王绪林</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>2015</creationdate><title>Cylindrical effects in weakly nonlinear Rayleigh Taylor instability</title><author>刘万海 马文芳 王绪林</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-5c636a0a600be715720a79e1e2a394608cc1d14f3003526cccda4f9996f58b0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cartesian</topic><topic>Density</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Gravitation</topic><topic>Perturbation methods</topic><topic>Rayleigh-Taylor instability</topic><topic>不稳定性</topic><topic>几何形状</topic><topic>圆柱</topic><topic>弱非线性</topic><topic>振荡条件</topic><topic>接口功能</topic><topic>泰勒</topic><topic>瑞利</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>刘万海 马文芳 王绪林</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>刘万海 马文芳 王绪林</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cylindrical effects in weakly nonlinear Rayleigh Taylor instability</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2015</date><risdate>2015</risdate><volume>24</volume><issue>1</issue><spage>388</spage><epage>393</epage><pages>388-393</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><eissn>1741-4199</eissn><abstract>The classical Rayleigh–Taylor instability(RTI) at the interface between two variable density fluids in the cylindrical geometry is explicitly investigated by the formal perturbation method up to the second order. Two styles of RTI, convergent(i.e., gravity pointing inward) and divergent(i.e., gravity pointing outwards) configurations, compared with RTI in Cartesian geometry, are taken into account. Our explicit results show that the interface function in the cylindrical geometry consists of two parts: oscillatory part similar to the result of the Cartesian geometry, and non-oscillatory one contributing nothing to the result of the Cartesian geometry. The velocity resulting only from the non-oscillatory term is followed with interest in this paper. It is found that both the convergent and the divergent configurations have the same zeroth-order velocity, whose magnitude increases with the Atwood number, while decreases with the initial radius of the interface or mode number. The occurrence of non-oscillation terms is an essential character of the RTI in the cylindrical geometry different from Cartesian one.</abstract><doi>10.1088/1674-1056/24/1/015202</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2015, Vol.24 (1), p.388-393
issn 1674-1056
2058-3834
1741-4199
language eng
recordid cdi_proquest_miscellaneous_1753515510
source IOP Publishing Journals
subjects Cartesian
Density
Fluid dynamics
Fluid flow
Fluids
Gravitation
Perturbation methods
Rayleigh-Taylor instability
不稳定性
几何形状
圆柱
弱非线性
振荡条件
接口功能
泰勒
瑞利
title Cylindrical effects in weakly nonlinear Rayleigh Taylor instability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cylindrical%20effects%20in%20weakly%20nonlinear%20Rayleigh%20Taylor%20instability&rft.jtitle=Chinese%20physics%20B&rft.au=%E5%88%98%E4%B8%87%E6%B5%B7%20%E9%A9%AC%E6%96%87%E8%8A%B3%20%E7%8E%8B%E7%BB%AA%E6%9E%97&rft.date=2015&rft.volume=24&rft.issue=1&rft.spage=388&rft.epage=393&rft.pages=388-393&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/24/1/015202&rft_dat=%3Cproquest_cross%3E1753515510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753515510&rft_id=info:pmid/&rft_cqvip_id=663382121&rfr_iscdi=true