Programmable Redox State of the Nickel Ion Chain in DNA

DNA is a nanowire in nature which chelates Ni ions and forms a conducting chain in its base-pairs (Ni-DNA). Each Ni ion in Ni-DNA exhibits low (Ni2+) or high (Ni3+) oxidation state and can be switched sequentially by applying bias voltage with different polarities and writing times. The ratio of low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2014-02, Vol.14 (2), p.1026-1031
Hauptverfasser: Chu, Hsueh-Liang, Chiu, Shao-Chien, Sung, Ching-Feng, Tseng, Wellen, Chang, Yu-Chuan, Jian, Wen-Bin, Chen, Yu-Chang, Yuan, Chiun-Jye, Li, Hsing-Yuan, Gu, Frank X, Di Ventra, Massimiliano, Chang, Chia-Ching
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1031
container_issue 2
container_start_page 1026
container_title Nano letters
container_volume 14
creator Chu, Hsueh-Liang
Chiu, Shao-Chien
Sung, Ching-Feng
Tseng, Wellen
Chang, Yu-Chuan
Jian, Wen-Bin
Chen, Yu-Chang
Yuan, Chiun-Jye
Li, Hsing-Yuan
Gu, Frank X
Di Ventra, Massimiliano
Chang, Chia-Ching
description DNA is a nanowire in nature which chelates Ni ions and forms a conducting chain in its base-pairs (Ni-DNA). Each Ni ion in Ni-DNA exhibits low (Ni2+) or high (Ni3+) oxidation state and can be switched sequentially by applying bias voltage with different polarities and writing times. The ratio of low and high oxidation states of Ni ions in Ni-DNA represents a programmable multistate memory system with an added capacitive component, in which multistate information can be written, read, and erased. This study also indicates that the biomolecule-based self-organized nanostructure can be used as a template for nanodevice fabrication.
doi_str_mv 10.1021/nl404601s
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753512656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1534829886</sourcerecordid><originalsourceid>FETCH-LOGICAL-a411t-22c182bb493dfb99e16ba13c3bfe8779d3bb007072dbe9578029590cf8cb6a943</originalsourceid><addsrcrecordid>eNqN0MtKAzEUgOEgiq3VhS8gsxF0UT25TZJlqbdCqeJlPSSZjJ06l5rMgL69I63tRlAInCw-zoEfoWMMFxgIvqwKBiwGHHZQH3MKw1gpsrv5S9ZDByEsAEBRDvuoRxjjMSjSR-LB169el6U2hYseXVp_RE-NblxUZ1Ezd9Est2-uiCZ1FY3nOq-i7l3NRodoL9NFcEfrOUAvN9fP47vh9P52Mh5Nh5ph3AwJsVgSY5iiaWaUcjg2GlNLTeakECqlxgAIECQ1TnEhgSiuwGbSmlgrRgfobLV36ev31oUmKfNgXVHoytVtSLDglGMS8_hvyimTREn5D8qUwpwwITp6vqLW1yF4lyVLn5fafyYYku_6yaZ-Z0_Wa1tTunQjf3J34HQNdLC6yLyubB62TlKgXY6t0zYki7r1Vdf4l4Nf8gyUTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499152477</pqid></control><display><type>article</type><title>Programmable Redox State of the Nickel Ion Chain in DNA</title><source>ACS Publications</source><source>MEDLINE</source><creator>Chu, Hsueh-Liang ; Chiu, Shao-Chien ; Sung, Ching-Feng ; Tseng, Wellen ; Chang, Yu-Chuan ; Jian, Wen-Bin ; Chen, Yu-Chang ; Yuan, Chiun-Jye ; Li, Hsing-Yuan ; Gu, Frank X ; Di Ventra, Massimiliano ; Chang, Chia-Ching</creator><creatorcontrib>Chu, Hsueh-Liang ; Chiu, Shao-Chien ; Sung, Ching-Feng ; Tseng, Wellen ; Chang, Yu-Chuan ; Jian, Wen-Bin ; Chen, Yu-Chang ; Yuan, Chiun-Jye ; Li, Hsing-Yuan ; Gu, Frank X ; Di Ventra, Massimiliano ; Chang, Chia-Ching</creatorcontrib><description>DNA is a nanowire in nature which chelates Ni ions and forms a conducting chain in its base-pairs (Ni-DNA). Each Ni ion in Ni-DNA exhibits low (Ni2+) or high (Ni3+) oxidation state and can be switched sequentially by applying bias voltage with different polarities and writing times. The ratio of low and high oxidation states of Ni ions in Ni-DNA represents a programmable multistate memory system with an added capacitive component, in which multistate information can be written, read, and erased. This study also indicates that the biomolecule-based self-organized nanostructure can be used as a template for nanodevice fabrication.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl404601s</identifier><identifier>PMID: 24456092</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chains ; Chemical synthesis methods ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Deoxyribonucleic acid ; DNA - chemistry ; DNA - ultrastructure ; Electric Conductivity ; Electric Impedance ; Electric potential ; Electrodes ; Exact sciences and technology ; Ions ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Methods of nanofabrication ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Nanowires - chemistry ; Nanowires - ultrastructure ; Nickel ; Nickel - chemistry ; Oxidation-Reduction ; Oxygen - chemistry ; Physics ; Polarity ; Quantum wires ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Valence ; Voltage</subject><ispartof>Nano letters, 2014-02, Vol.14 (2), p.1026-1031</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a411t-22c182bb493dfb99e16ba13c3bfe8779d3bb007072dbe9578029590cf8cb6a943</citedby><cites>FETCH-LOGICAL-a411t-22c182bb493dfb99e16ba13c3bfe8779d3bb007072dbe9578029590cf8cb6a943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl404601s$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl404601s$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28303007$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24456092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Hsueh-Liang</creatorcontrib><creatorcontrib>Chiu, Shao-Chien</creatorcontrib><creatorcontrib>Sung, Ching-Feng</creatorcontrib><creatorcontrib>Tseng, Wellen</creatorcontrib><creatorcontrib>Chang, Yu-Chuan</creatorcontrib><creatorcontrib>Jian, Wen-Bin</creatorcontrib><creatorcontrib>Chen, Yu-Chang</creatorcontrib><creatorcontrib>Yuan, Chiun-Jye</creatorcontrib><creatorcontrib>Li, Hsing-Yuan</creatorcontrib><creatorcontrib>Gu, Frank X</creatorcontrib><creatorcontrib>Di Ventra, Massimiliano</creatorcontrib><creatorcontrib>Chang, Chia-Ching</creatorcontrib><title>Programmable Redox State of the Nickel Ion Chain in DNA</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>DNA is a nanowire in nature which chelates Ni ions and forms a conducting chain in its base-pairs (Ni-DNA). Each Ni ion in Ni-DNA exhibits low (Ni2+) or high (Ni3+) oxidation state and can be switched sequentially by applying bias voltage with different polarities and writing times. The ratio of low and high oxidation states of Ni ions in Ni-DNA represents a programmable multistate memory system with an added capacitive component, in which multistate information can be written, read, and erased. This study also indicates that the biomolecule-based self-organized nanostructure can be used as a template for nanodevice fabrication.</description><subject>Chains</subject><subject>Chemical synthesis methods</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deoxyribonucleic acid</subject><subject>DNA - chemistry</subject><subject>DNA - ultrastructure</subject><subject>Electric Conductivity</subject><subject>Electric Impedance</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>Ions</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Methods of nanofabrication</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Nanowires - chemistry</subject><subject>Nanowires - ultrastructure</subject><subject>Nickel</subject><subject>Nickel - chemistry</subject><subject>Oxidation-Reduction</subject><subject>Oxygen - chemistry</subject><subject>Physics</subject><subject>Polarity</subject><subject>Quantum wires</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Valence</subject><subject>Voltage</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0MtKAzEUgOEgiq3VhS8gsxF0UT25TZJlqbdCqeJlPSSZjJ06l5rMgL69I63tRlAInCw-zoEfoWMMFxgIvqwKBiwGHHZQH3MKw1gpsrv5S9ZDByEsAEBRDvuoRxjjMSjSR-LB169el6U2hYseXVp_RE-NblxUZ1Ezd9Est2-uiCZ1FY3nOq-i7l3NRodoL9NFcEfrOUAvN9fP47vh9P52Mh5Nh5ph3AwJsVgSY5iiaWaUcjg2GlNLTeakECqlxgAIECQ1TnEhgSiuwGbSmlgrRgfobLV36ev31oUmKfNgXVHoytVtSLDglGMS8_hvyimTREn5D8qUwpwwITp6vqLW1yF4lyVLn5fafyYYku_6yaZ-Z0_Wa1tTunQjf3J34HQNdLC6yLyubB62TlKgXY6t0zYki7r1Vdf4l4Nf8gyUTw</recordid><startdate>20140212</startdate><enddate>20140212</enddate><creator>Chu, Hsueh-Liang</creator><creator>Chiu, Shao-Chien</creator><creator>Sung, Ching-Feng</creator><creator>Tseng, Wellen</creator><creator>Chang, Yu-Chuan</creator><creator>Jian, Wen-Bin</creator><creator>Chen, Yu-Chang</creator><creator>Yuan, Chiun-Jye</creator><creator>Li, Hsing-Yuan</creator><creator>Gu, Frank X</creator><creator>Di Ventra, Massimiliano</creator><creator>Chang, Chia-Ching</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140212</creationdate><title>Programmable Redox State of the Nickel Ion Chain in DNA</title><author>Chu, Hsueh-Liang ; Chiu, Shao-Chien ; Sung, Ching-Feng ; Tseng, Wellen ; Chang, Yu-Chuan ; Jian, Wen-Bin ; Chen, Yu-Chang ; Yuan, Chiun-Jye ; Li, Hsing-Yuan ; Gu, Frank X ; Di Ventra, Massimiliano ; Chang, Chia-Ching</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a411t-22c182bb493dfb99e16ba13c3bfe8779d3bb007072dbe9578029590cf8cb6a943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chains</topic><topic>Chemical synthesis methods</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deoxyribonucleic acid</topic><topic>DNA - chemistry</topic><topic>DNA - ultrastructure</topic><topic>Electric Conductivity</topic><topic>Electric Impedance</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>Ions</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Methods of nanofabrication</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Nanowires - chemistry</topic><topic>Nanowires - ultrastructure</topic><topic>Nickel</topic><topic>Nickel - chemistry</topic><topic>Oxidation-Reduction</topic><topic>Oxygen - chemistry</topic><topic>Physics</topic><topic>Polarity</topic><topic>Quantum wires</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Valence</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Hsueh-Liang</creatorcontrib><creatorcontrib>Chiu, Shao-Chien</creatorcontrib><creatorcontrib>Sung, Ching-Feng</creatorcontrib><creatorcontrib>Tseng, Wellen</creatorcontrib><creatorcontrib>Chang, Yu-Chuan</creatorcontrib><creatorcontrib>Jian, Wen-Bin</creatorcontrib><creatorcontrib>Chen, Yu-Chang</creatorcontrib><creatorcontrib>Yuan, Chiun-Jye</creatorcontrib><creatorcontrib>Li, Hsing-Yuan</creatorcontrib><creatorcontrib>Gu, Frank X</creatorcontrib><creatorcontrib>Di Ventra, Massimiliano</creatorcontrib><creatorcontrib>Chang, Chia-Ching</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Hsueh-Liang</au><au>Chiu, Shao-Chien</au><au>Sung, Ching-Feng</au><au>Tseng, Wellen</au><au>Chang, Yu-Chuan</au><au>Jian, Wen-Bin</au><au>Chen, Yu-Chang</au><au>Yuan, Chiun-Jye</au><au>Li, Hsing-Yuan</au><au>Gu, Frank X</au><au>Di Ventra, Massimiliano</au><au>Chang, Chia-Ching</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programmable Redox State of the Nickel Ion Chain in DNA</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2014-02-12</date><risdate>2014</risdate><volume>14</volume><issue>2</issue><spage>1026</spage><epage>1031</epage><pages>1026-1031</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>DNA is a nanowire in nature which chelates Ni ions and forms a conducting chain in its base-pairs (Ni-DNA). Each Ni ion in Ni-DNA exhibits low (Ni2+) or high (Ni3+) oxidation state and can be switched sequentially by applying bias voltage with different polarities and writing times. The ratio of low and high oxidation states of Ni ions in Ni-DNA represents a programmable multistate memory system with an added capacitive component, in which multistate information can be written, read, and erased. This study also indicates that the biomolecule-based self-organized nanostructure can be used as a template for nanodevice fabrication.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24456092</pmid><doi>10.1021/nl404601s</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2014-02, Vol.14 (2), p.1026-1031
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1753512656
source ACS Publications; MEDLINE
subjects Chains
Chemical synthesis methods
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Deoxyribonucleic acid
DNA - chemistry
DNA - ultrastructure
Electric Conductivity
Electric Impedance
Electric potential
Electrodes
Exact sciences and technology
Ions
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Materials science
Metal Nanoparticles - chemistry
Metal Nanoparticles - ultrastructure
Methods of nanofabrication
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Nanowires - chemistry
Nanowires - ultrastructure
Nickel
Nickel - chemistry
Oxidation-Reduction
Oxygen - chemistry
Physics
Polarity
Quantum wires
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Valence
Voltage
title Programmable Redox State of the Nickel Ion Chain in DNA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programmable%20Redox%20State%20of%20the%20Nickel%20Ion%20Chain%20in%20DNA&rft.jtitle=Nano%20letters&rft.au=Chu,%20Hsueh-Liang&rft.date=2014-02-12&rft.volume=14&rft.issue=2&rft.spage=1026&rft.epage=1031&rft.pages=1026-1031&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl404601s&rft_dat=%3Cproquest_cross%3E1534829886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499152477&rft_id=info:pmid/24456092&rfr_iscdi=true