Bottom-Up View of Water Network-Mediated CO sub(2) Reduction Using Cryogenic Cluster Ion Spectroscopy and Direct Dynamics Simulations

The transition states of a chemical reaction in solution are generally accessed through exchange of thermal energy between the solvent and the reactants. As such, an ensemble of reacting systems approaches the transition state configuration of reactant and surrounding solvent in an incoherent manner...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2012-01, Vol.116 (3), p.903-912-903-912
Hauptverfasser: Breen, Kristin J, DeBlase, Andrew F, Guasco, Timothy L, Voora, Vamsee K, Jordan, Kenneth D, Nagata, Takashi, Johnson, Mark A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 912-903-912
container_issue 3
container_start_page 903
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 116
creator Breen, Kristin J
DeBlase, Andrew F
Guasco, Timothy L
Voora, Vamsee K
Jordan, Kenneth D
Nagata, Takashi
Johnson, Mark A
description The transition states of a chemical reaction in solution are generally accessed through exchange of thermal energy between the solvent and the reactants. As such, an ensemble of reacting systems approaches the transition state configuration of reactant and surrounding solvent in an incoherent manner that does not lend itself to direct experimental observation. Here we describe how gas-phase cluster chemistry can provide a detailed picture of the microscopic mechanics at play when a network of six water molecules mediates the trapping of a highly reactive "hydrated electron" onto a neutral CO sub(2) molecule to form a radical anion. The exothermic reaction is triggered from a metastable intermediate by selective excitation of either the reactant CO sub(2) or the water network, which is evidenced by the evaporative decomposition of the product cluster. Ab initio molecular dynamics simulations of energized CO sub(2).(H sub(2)O) sub(6) super(-) clusters are used to elucidate the nature of the network deformations that mediate intracluster electron capture, thus revealing the detailed solvent fluctuations implicit in the Marcus theory for electron-transfer kinetics in solution.
doi_str_mv 10.1021/jp209493v
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753511837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753511837</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_17535118373</originalsourceid><addsrcrecordid>eNqVjEtOwzAURS0EEuUzYAdvWAYBf2raTEmpYABIlMKwMs5r5ZLYwc-m6gLYN6nEBhjdq3M_jF0IfiW4FNebTvJyVKrvAzYQWvJCS6EPe88nZaFvVHnMTog2nHOh5GjAfm5DSqEtFh28OdxCWMG7SRjhCdM2xM_iEWvXgxqqZ6D8MZSX8IJ1tskFDwtyfg1V3IU1emehajLtxw99Nu_QphjIhm4HxtcwdbEnMN150zpLMHdtbsz-h87Y0co0hOd_esqGs7vX6r7oYvjKSGnZOrLYNMZjyLQUY620EBM1Vv-o_gJE_Fr_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753511837</pqid></control><display><type>article</type><title>Bottom-Up View of Water Network-Mediated CO sub(2) Reduction Using Cryogenic Cluster Ion Spectroscopy and Direct Dynamics Simulations</title><source>American Chemical Society Journals</source><creator>Breen, Kristin J ; DeBlase, Andrew F ; Guasco, Timothy L ; Voora, Vamsee K ; Jordan, Kenneth D ; Nagata, Takashi ; Johnson, Mark A</creator><creatorcontrib>Breen, Kristin J ; DeBlase, Andrew F ; Guasco, Timothy L ; Voora, Vamsee K ; Jordan, Kenneth D ; Nagata, Takashi ; Johnson, Mark A</creatorcontrib><description>The transition states of a chemical reaction in solution are generally accessed through exchange of thermal energy between the solvent and the reactants. As such, an ensemble of reacting systems approaches the transition state configuration of reactant and surrounding solvent in an incoherent manner that does not lend itself to direct experimental observation. Here we describe how gas-phase cluster chemistry can provide a detailed picture of the microscopic mechanics at play when a network of six water molecules mediates the trapping of a highly reactive "hydrated electron" onto a neutral CO sub(2) molecule to form a radical anion. The exothermic reaction is triggered from a metastable intermediate by selective excitation of either the reactant CO sub(2) or the water network, which is evidenced by the evaporative decomposition of the product cluster. Ab initio molecular dynamics simulations of energized CO sub(2).(H sub(2)O) sub(6) super(-) clusters are used to elucidate the nature of the network deformations that mediate intracluster electron capture, thus revealing the detailed solvent fluctuations implicit in the Marcus theory for electron-transfer kinetics in solution.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp209493v</identifier><language>eng</language><subject>Carbon dioxide ; Clusters ; Dynamics ; Evaporative ; Networks ; Simulation ; Solvents ; Spectroscopy</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2012-01, Vol.116 (3), p.903-912-903-912</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Breen, Kristin J</creatorcontrib><creatorcontrib>DeBlase, Andrew F</creatorcontrib><creatorcontrib>Guasco, Timothy L</creatorcontrib><creatorcontrib>Voora, Vamsee K</creatorcontrib><creatorcontrib>Jordan, Kenneth D</creatorcontrib><creatorcontrib>Nagata, Takashi</creatorcontrib><creatorcontrib>Johnson, Mark A</creatorcontrib><title>Bottom-Up View of Water Network-Mediated CO sub(2) Reduction Using Cryogenic Cluster Ion Spectroscopy and Direct Dynamics Simulations</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><description>The transition states of a chemical reaction in solution are generally accessed through exchange of thermal energy between the solvent and the reactants. As such, an ensemble of reacting systems approaches the transition state configuration of reactant and surrounding solvent in an incoherent manner that does not lend itself to direct experimental observation. Here we describe how gas-phase cluster chemistry can provide a detailed picture of the microscopic mechanics at play when a network of six water molecules mediates the trapping of a highly reactive "hydrated electron" onto a neutral CO sub(2) molecule to form a radical anion. The exothermic reaction is triggered from a metastable intermediate by selective excitation of either the reactant CO sub(2) or the water network, which is evidenced by the evaporative decomposition of the product cluster. Ab initio molecular dynamics simulations of energized CO sub(2).(H sub(2)O) sub(6) super(-) clusters are used to elucidate the nature of the network deformations that mediate intracluster electron capture, thus revealing the detailed solvent fluctuations implicit in the Marcus theory for electron-transfer kinetics in solution.</description><subject>Carbon dioxide</subject><subject>Clusters</subject><subject>Dynamics</subject><subject>Evaporative</subject><subject>Networks</subject><subject>Simulation</subject><subject>Solvents</subject><subject>Spectroscopy</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqVjEtOwzAURS0EEuUzYAdvWAYBf2raTEmpYABIlMKwMs5r5ZLYwc-m6gLYN6nEBhjdq3M_jF0IfiW4FNebTvJyVKrvAzYQWvJCS6EPe88nZaFvVHnMTog2nHOh5GjAfm5DSqEtFh28OdxCWMG7SRjhCdM2xM_iEWvXgxqqZ6D8MZSX8IJ1tskFDwtyfg1V3IU1emehajLtxw99Nu_QphjIhm4HxtcwdbEnMN150zpLMHdtbsz-h87Y0co0hOd_esqGs7vX6r7oYvjKSGnZOrLYNMZjyLQUY620EBM1Vv-o_gJE_Fr_</recordid><startdate>20120106</startdate><enddate>20120106</enddate><creator>Breen, Kristin J</creator><creator>DeBlase, Andrew F</creator><creator>Guasco, Timothy L</creator><creator>Voora, Vamsee K</creator><creator>Jordan, Kenneth D</creator><creator>Nagata, Takashi</creator><creator>Johnson, Mark A</creator><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120106</creationdate><title>Bottom-Up View of Water Network-Mediated CO sub(2) Reduction Using Cryogenic Cluster Ion Spectroscopy and Direct Dynamics Simulations</title><author>Breen, Kristin J ; DeBlase, Andrew F ; Guasco, Timothy L ; Voora, Vamsee K ; Jordan, Kenneth D ; Nagata, Takashi ; Johnson, Mark A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_17535118373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Carbon dioxide</topic><topic>Clusters</topic><topic>Dynamics</topic><topic>Evaporative</topic><topic>Networks</topic><topic>Simulation</topic><topic>Solvents</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breen, Kristin J</creatorcontrib><creatorcontrib>DeBlase, Andrew F</creatorcontrib><creatorcontrib>Guasco, Timothy L</creatorcontrib><creatorcontrib>Voora, Vamsee K</creatorcontrib><creatorcontrib>Jordan, Kenneth D</creatorcontrib><creatorcontrib>Nagata, Takashi</creatorcontrib><creatorcontrib>Johnson, Mark A</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breen, Kristin J</au><au>DeBlase, Andrew F</au><au>Guasco, Timothy L</au><au>Voora, Vamsee K</au><au>Jordan, Kenneth D</au><au>Nagata, Takashi</au><au>Johnson, Mark A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bottom-Up View of Water Network-Mediated CO sub(2) Reduction Using Cryogenic Cluster Ion Spectroscopy and Direct Dynamics Simulations</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><date>2012-01-06</date><risdate>2012</risdate><volume>116</volume><issue>3</issue><spage>903</spage><epage>912-903-912</epage><pages>903-912-903-912</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The transition states of a chemical reaction in solution are generally accessed through exchange of thermal energy between the solvent and the reactants. As such, an ensemble of reacting systems approaches the transition state configuration of reactant and surrounding solvent in an incoherent manner that does not lend itself to direct experimental observation. Here we describe how gas-phase cluster chemistry can provide a detailed picture of the microscopic mechanics at play when a network of six water molecules mediates the trapping of a highly reactive "hydrated electron" onto a neutral CO sub(2) molecule to form a radical anion. The exothermic reaction is triggered from a metastable intermediate by selective excitation of either the reactant CO sub(2) or the water network, which is evidenced by the evaporative decomposition of the product cluster. Ab initio molecular dynamics simulations of energized CO sub(2).(H sub(2)O) sub(6) super(-) clusters are used to elucidate the nature of the network deformations that mediate intracluster electron capture, thus revealing the detailed solvent fluctuations implicit in the Marcus theory for electron-transfer kinetics in solution.</abstract><doi>10.1021/jp209493v</doi></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2012-01, Vol.116 (3), p.903-912-903-912
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_1753511837
source American Chemical Society Journals
subjects Carbon dioxide
Clusters
Dynamics
Evaporative
Networks
Simulation
Solvents
Spectroscopy
title Bottom-Up View of Water Network-Mediated CO sub(2) Reduction Using Cryogenic Cluster Ion Spectroscopy and Direct Dynamics Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bottom-Up%20View%20of%20Water%20Network-Mediated%20CO%20sub(2)%20Reduction%20Using%20Cryogenic%20Cluster%20Ion%20Spectroscopy%20and%20Direct%20Dynamics%20Simulations&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Breen,%20Kristin%20J&rft.date=2012-01-06&rft.volume=116&rft.issue=3&rft.spage=903&rft.epage=912-903-912&rft.pages=903-912-903-912&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp209493v&rft_dat=%3Cproquest%3E1753511837%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753511837&rft_id=info:pmid/&rfr_iscdi=true