Bottom-Up View of Water Network-Mediated CO sub(2) Reduction Using Cryogenic Cluster Ion Spectroscopy and Direct Dynamics Simulations
The transition states of a chemical reaction in solution are generally accessed through exchange of thermal energy between the solvent and the reactants. As such, an ensemble of reacting systems approaches the transition state configuration of reactant and surrounding solvent in an incoherent manner...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2012-01, Vol.116 (3), p.903-912-903-912 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 912-903-912 |
---|---|
container_issue | 3 |
container_start_page | 903 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 116 |
creator | Breen, Kristin J DeBlase, Andrew F Guasco, Timothy L Voora, Vamsee K Jordan, Kenneth D Nagata, Takashi Johnson, Mark A |
description | The transition states of a chemical reaction in solution are generally accessed through exchange of thermal energy between the solvent and the reactants. As such, an ensemble of reacting systems approaches the transition state configuration of reactant and surrounding solvent in an incoherent manner that does not lend itself to direct experimental observation. Here we describe how gas-phase cluster chemistry can provide a detailed picture of the microscopic mechanics at play when a network of six water molecules mediates the trapping of a highly reactive "hydrated electron" onto a neutral CO sub(2) molecule to form a radical anion. The exothermic reaction is triggered from a metastable intermediate by selective excitation of either the reactant CO sub(2) or the water network, which is evidenced by the evaporative decomposition of the product cluster. Ab initio molecular dynamics simulations of energized CO sub(2).(H sub(2)O) sub(6) super(-) clusters are used to elucidate the nature of the network deformations that mediate intracluster electron capture, thus revealing the detailed solvent fluctuations implicit in the Marcus theory for electron-transfer kinetics in solution. |
doi_str_mv | 10.1021/jp209493v |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753511837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753511837</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_17535118373</originalsourceid><addsrcrecordid>eNqVjEtOwzAURS0EEuUzYAdvWAYBf2raTEmpYABIlMKwMs5r5ZLYwc-m6gLYN6nEBhjdq3M_jF0IfiW4FNebTvJyVKrvAzYQWvJCS6EPe88nZaFvVHnMTog2nHOh5GjAfm5DSqEtFh28OdxCWMG7SRjhCdM2xM_iEWvXgxqqZ6D8MZSX8IJ1tskFDwtyfg1V3IU1emehajLtxw99Nu_QphjIhm4HxtcwdbEnMN150zpLMHdtbsz-h87Y0co0hOd_esqGs7vX6r7oYvjKSGnZOrLYNMZjyLQUY620EBM1Vv-o_gJE_Fr_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753511837</pqid></control><display><type>article</type><title>Bottom-Up View of Water Network-Mediated CO sub(2) Reduction Using Cryogenic Cluster Ion Spectroscopy and Direct Dynamics Simulations</title><source>American Chemical Society Journals</source><creator>Breen, Kristin J ; DeBlase, Andrew F ; Guasco, Timothy L ; Voora, Vamsee K ; Jordan, Kenneth D ; Nagata, Takashi ; Johnson, Mark A</creator><creatorcontrib>Breen, Kristin J ; DeBlase, Andrew F ; Guasco, Timothy L ; Voora, Vamsee K ; Jordan, Kenneth D ; Nagata, Takashi ; Johnson, Mark A</creatorcontrib><description>The transition states of a chemical reaction in solution are generally accessed through exchange of thermal energy between the solvent and the reactants. As such, an ensemble of reacting systems approaches the transition state configuration of reactant and surrounding solvent in an incoherent manner that does not lend itself to direct experimental observation. Here we describe how gas-phase cluster chemistry can provide a detailed picture of the microscopic mechanics at play when a network of six water molecules mediates the trapping of a highly reactive "hydrated electron" onto a neutral CO sub(2) molecule to form a radical anion. The exothermic reaction is triggered from a metastable intermediate by selective excitation of either the reactant CO sub(2) or the water network, which is evidenced by the evaporative decomposition of the product cluster. Ab initio molecular dynamics simulations of energized CO sub(2).(H sub(2)O) sub(6) super(-) clusters are used to elucidate the nature of the network deformations that mediate intracluster electron capture, thus revealing the detailed solvent fluctuations implicit in the Marcus theory for electron-transfer kinetics in solution.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp209493v</identifier><language>eng</language><subject>Carbon dioxide ; Clusters ; Dynamics ; Evaporative ; Networks ; Simulation ; Solvents ; Spectroscopy</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2012-01, Vol.116 (3), p.903-912-903-912</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Breen, Kristin J</creatorcontrib><creatorcontrib>DeBlase, Andrew F</creatorcontrib><creatorcontrib>Guasco, Timothy L</creatorcontrib><creatorcontrib>Voora, Vamsee K</creatorcontrib><creatorcontrib>Jordan, Kenneth D</creatorcontrib><creatorcontrib>Nagata, Takashi</creatorcontrib><creatorcontrib>Johnson, Mark A</creatorcontrib><title>Bottom-Up View of Water Network-Mediated CO sub(2) Reduction Using Cryogenic Cluster Ion Spectroscopy and Direct Dynamics Simulations</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><description>The transition states of a chemical reaction in solution are generally accessed through exchange of thermal energy between the solvent and the reactants. As such, an ensemble of reacting systems approaches the transition state configuration of reactant and surrounding solvent in an incoherent manner that does not lend itself to direct experimental observation. Here we describe how gas-phase cluster chemistry can provide a detailed picture of the microscopic mechanics at play when a network of six water molecules mediates the trapping of a highly reactive "hydrated electron" onto a neutral CO sub(2) molecule to form a radical anion. The exothermic reaction is triggered from a metastable intermediate by selective excitation of either the reactant CO sub(2) or the water network, which is evidenced by the evaporative decomposition of the product cluster. Ab initio molecular dynamics simulations of energized CO sub(2).(H sub(2)O) sub(6) super(-) clusters are used to elucidate the nature of the network deformations that mediate intracluster electron capture, thus revealing the detailed solvent fluctuations implicit in the Marcus theory for electron-transfer kinetics in solution.</description><subject>Carbon dioxide</subject><subject>Clusters</subject><subject>Dynamics</subject><subject>Evaporative</subject><subject>Networks</subject><subject>Simulation</subject><subject>Solvents</subject><subject>Spectroscopy</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqVjEtOwzAURS0EEuUzYAdvWAYBf2raTEmpYABIlMKwMs5r5ZLYwc-m6gLYN6nEBhjdq3M_jF0IfiW4FNebTvJyVKrvAzYQWvJCS6EPe88nZaFvVHnMTog2nHOh5GjAfm5DSqEtFh28OdxCWMG7SRjhCdM2xM_iEWvXgxqqZ6D8MZSX8IJ1tskFDwtyfg1V3IU1emehajLtxw99Nu_QphjIhm4HxtcwdbEnMN150zpLMHdtbsz-h87Y0co0hOd_esqGs7vX6r7oYvjKSGnZOrLYNMZjyLQUY620EBM1Vv-o_gJE_Fr_</recordid><startdate>20120106</startdate><enddate>20120106</enddate><creator>Breen, Kristin J</creator><creator>DeBlase, Andrew F</creator><creator>Guasco, Timothy L</creator><creator>Voora, Vamsee K</creator><creator>Jordan, Kenneth D</creator><creator>Nagata, Takashi</creator><creator>Johnson, Mark A</creator><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120106</creationdate><title>Bottom-Up View of Water Network-Mediated CO sub(2) Reduction Using Cryogenic Cluster Ion Spectroscopy and Direct Dynamics Simulations</title><author>Breen, Kristin J ; DeBlase, Andrew F ; Guasco, Timothy L ; Voora, Vamsee K ; Jordan, Kenneth D ; Nagata, Takashi ; Johnson, Mark A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_17535118373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Carbon dioxide</topic><topic>Clusters</topic><topic>Dynamics</topic><topic>Evaporative</topic><topic>Networks</topic><topic>Simulation</topic><topic>Solvents</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breen, Kristin J</creatorcontrib><creatorcontrib>DeBlase, Andrew F</creatorcontrib><creatorcontrib>Guasco, Timothy L</creatorcontrib><creatorcontrib>Voora, Vamsee K</creatorcontrib><creatorcontrib>Jordan, Kenneth D</creatorcontrib><creatorcontrib>Nagata, Takashi</creatorcontrib><creatorcontrib>Johnson, Mark A</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breen, Kristin J</au><au>DeBlase, Andrew F</au><au>Guasco, Timothy L</au><au>Voora, Vamsee K</au><au>Jordan, Kenneth D</au><au>Nagata, Takashi</au><au>Johnson, Mark A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bottom-Up View of Water Network-Mediated CO sub(2) Reduction Using Cryogenic Cluster Ion Spectroscopy and Direct Dynamics Simulations</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><date>2012-01-06</date><risdate>2012</risdate><volume>116</volume><issue>3</issue><spage>903</spage><epage>912-903-912</epage><pages>903-912-903-912</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The transition states of a chemical reaction in solution are generally accessed through exchange of thermal energy between the solvent and the reactants. As such, an ensemble of reacting systems approaches the transition state configuration of reactant and surrounding solvent in an incoherent manner that does not lend itself to direct experimental observation. Here we describe how gas-phase cluster chemistry can provide a detailed picture of the microscopic mechanics at play when a network of six water molecules mediates the trapping of a highly reactive "hydrated electron" onto a neutral CO sub(2) molecule to form a radical anion. The exothermic reaction is triggered from a metastable intermediate by selective excitation of either the reactant CO sub(2) or the water network, which is evidenced by the evaporative decomposition of the product cluster. Ab initio molecular dynamics simulations of energized CO sub(2).(H sub(2)O) sub(6) super(-) clusters are used to elucidate the nature of the network deformations that mediate intracluster electron capture, thus revealing the detailed solvent fluctuations implicit in the Marcus theory for electron-transfer kinetics in solution.</abstract><doi>10.1021/jp209493v</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2012-01, Vol.116 (3), p.903-912-903-912 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753511837 |
source | American Chemical Society Journals |
subjects | Carbon dioxide Clusters Dynamics Evaporative Networks Simulation Solvents Spectroscopy |
title | Bottom-Up View of Water Network-Mediated CO sub(2) Reduction Using Cryogenic Cluster Ion Spectroscopy and Direct Dynamics Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bottom-Up%20View%20of%20Water%20Network-Mediated%20CO%20sub(2)%20Reduction%20Using%20Cryogenic%20Cluster%20Ion%20Spectroscopy%20and%20Direct%20Dynamics%20Simulations&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Breen,%20Kristin%20J&rft.date=2012-01-06&rft.volume=116&rft.issue=3&rft.spage=903&rft.epage=912-903-912&rft.pages=903-912-903-912&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp209493v&rft_dat=%3Cproquest%3E1753511837%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753511837&rft_id=info:pmid/&rfr_iscdi=true |