Continuous wave laser induced third-order nonlinear optical properties of conducting polymers

We report the studies on the third‐order optical nonlinearity and optical power limiting properties of conducting polymers viz., poly(o‐anisidine) and polypyrrole. Continuous wave (CW) He–Ne laser operating at 633 nm was used as the source of excitation. Ultraviolet‐Visible (UV–VIS) spectroscopy mea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2015-10, Vol.55 (10), p.2396-2402
Hauptverfasser: Pramodini, S., Poornesh, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2402
container_issue 10
container_start_page 2396
container_title Polymer engineering and science
container_volume 55
creator Pramodini, S.
Poornesh, P.
description We report the studies on the third‐order optical nonlinearity and optical power limiting properties of conducting polymers viz., poly(o‐anisidine) and polypyrrole. Continuous wave (CW) He–Ne laser operating at 633 nm was used as the source of excitation. Ultraviolet‐Visible (UV–VIS) spectroscopy measurement reveals that the absorption bands are continuous and wide and hence can be used for photovoltaic applications. Fourier transform infrared spectroscopy (FTIR) was performed to elucidate the structure of polymers. Z‐scan technique was employed to determine the real and imaginary parts of third‐order nonlinear susceptibility χ(3), nonlinear absorption coefficient βeff, and nonlinear index of refraction n2. The estimated values of βeff, n2, and χ(3) are of the order of 10−2 cm/W, 10−5 esu, and 10−7 esu, respectively. The presence of large number of electron donating groups in the structure, leads to efficient charge transfer and results in the increase in conjugation length. The increase in conjugation length in turn increases the χ(3) value. Induced self‐diffraction rings were observed when the samples were exposed to laser beam due to thermal lensing and refractive index change. Good optical limiting and clamping behavior was achieved for various sample concentrations. These studies indicate that the polymers are a suitable candidate for photonic applications. POLYM. ENG. SCI., 55:2396–2402, 2015. © 2015 Society of Plastics Engineers
doi_str_mv 10.1002/pen.24128
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753511653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A431082437</galeid><sourcerecordid>A431082437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6148-2d41c10a2b024a170798c50271d2a46a3a49f3df460abf7ae13d9be318f28b903</originalsourceid><addsrcrecordid>eNp1km1rFDEUhQex4Fr94D8Y8IuCs81NMjOZj2Vta7FW8YWKICGTuTNNnU2myYx1_73Zbn1ZWQkkcHnO4SQ5SfIEyBwIoQcD2jnlQMW9ZAY5FxktGL-fzAhhNGNCiAfJwxCuSGRZXs2SrwtnR2MnN4X0Rn3HtFcBfWpsM2ls0vHS-CZzvokz62xvLCqfumE0WvXp4N2AfjQYUtem2q1F0axLB9evlujDo2SvVX3Ax3fnfvLp-Ojj4lV29vbkdHF4lukC1hkbDhqIojWhXEFJykronNASGqp4oZjiVcualhdE1W2pEFhT1chAtFTUFWH7ybONb0x0PWEY5dIEjX2vLMabSShzlgMUOYvo03_QKzd5G9NFCooSAPLqD9WpHqWxrRu90mtTecgZEEE5KyOV7aA6tOhV7yy2Jo63-PkOPq4Gl0bvFDzfEkRmxB9jp6YQ5OmH99vsi7_Yegrxr0Lcgukux7CR7LLW3oXgsZWDN0vlVxKIXFdJxirJ2ypF9mDD3sR8q_-D8t3R-S_F3cuYEAP_Vij_TRYlK3N5cX4iL16-_lK8EUR-Zj8BP9TWrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1716711159</pqid></control><display><type>article</type><title>Continuous wave laser induced third-order nonlinear optical properties of conducting polymers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pramodini, S. ; Poornesh, P.</creator><creatorcontrib>Pramodini, S. ; Poornesh, P.</creatorcontrib><description>We report the studies on the third‐order optical nonlinearity and optical power limiting properties of conducting polymers viz., poly(o‐anisidine) and polypyrrole. Continuous wave (CW) He–Ne laser operating at 633 nm was used as the source of excitation. Ultraviolet‐Visible (UV–VIS) spectroscopy measurement reveals that the absorption bands are continuous and wide and hence can be used for photovoltaic applications. Fourier transform infrared spectroscopy (FTIR) was performed to elucidate the structure of polymers. Z‐scan technique was employed to determine the real and imaginary parts of third‐order nonlinear susceptibility χ(3), nonlinear absorption coefficient βeff, and nonlinear index of refraction n2. The estimated values of βeff, n2, and χ(3) are of the order of 10−2 cm/W, 10−5 esu, and 10−7 esu, respectively. The presence of large number of electron donating groups in the structure, leads to efficient charge transfer and results in the increase in conjugation length. The increase in conjugation length in turn increases the χ(3) value. Induced self‐diffraction rings were observed when the samples were exposed to laser beam due to thermal lensing and refractive index change. Good optical limiting and clamping behavior was achieved for various sample concentrations. These studies indicate that the polymers are a suitable candidate for photonic applications. POLYM. ENG. SCI., 55:2396–2402, 2015. © 2015 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.24128</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Newtown: Blackwell Publishing Ltd</publisher><subject>Absorption spectra ; Analysis ; Conducting polymers ; Conjugation ; Constraining ; Continuous wave lasers ; Diffraction ; Fourier transforms ; Infrared spectroscopy ; Nonlinearity ; Optical properties ; Polymers ; Refractive index ; Refractivity ; Spectra ; Spectrum analysis</subject><ispartof>Polymer engineering and science, 2015-10, Vol.55 (10), p.2396-2402</ispartof><rights>2015 Society of Plastics Engineers</rights><rights>COPYRIGHT 2015 Society of Plastics Engineers, Inc.</rights><rights>Copyright Blackwell Publishing Ltd. Oct 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6148-2d41c10a2b024a170798c50271d2a46a3a49f3df460abf7ae13d9be318f28b903</citedby><cites>FETCH-LOGICAL-c6148-2d41c10a2b024a170798c50271d2a46a3a49f3df460abf7ae13d9be318f28b903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.24128$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.24128$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Pramodini, S.</creatorcontrib><creatorcontrib>Poornesh, P.</creatorcontrib><title>Continuous wave laser induced third-order nonlinear optical properties of conducting polymers</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>We report the studies on the third‐order optical nonlinearity and optical power limiting properties of conducting polymers viz., poly(o‐anisidine) and polypyrrole. Continuous wave (CW) He–Ne laser operating at 633 nm was used as the source of excitation. Ultraviolet‐Visible (UV–VIS) spectroscopy measurement reveals that the absorption bands are continuous and wide and hence can be used for photovoltaic applications. Fourier transform infrared spectroscopy (FTIR) was performed to elucidate the structure of polymers. Z‐scan technique was employed to determine the real and imaginary parts of third‐order nonlinear susceptibility χ(3), nonlinear absorption coefficient βeff, and nonlinear index of refraction n2. The estimated values of βeff, n2, and χ(3) are of the order of 10−2 cm/W, 10−5 esu, and 10−7 esu, respectively. The presence of large number of electron donating groups in the structure, leads to efficient charge transfer and results in the increase in conjugation length. The increase in conjugation length in turn increases the χ(3) value. Induced self‐diffraction rings were observed when the samples were exposed to laser beam due to thermal lensing and refractive index change. Good optical limiting and clamping behavior was achieved for various sample concentrations. These studies indicate that the polymers are a suitable candidate for photonic applications. POLYM. ENG. SCI., 55:2396–2402, 2015. © 2015 Society of Plastics Engineers</description><subject>Absorption spectra</subject><subject>Analysis</subject><subject>Conducting polymers</subject><subject>Conjugation</subject><subject>Constraining</subject><subject>Continuous wave lasers</subject><subject>Diffraction</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Nonlinearity</subject><subject>Optical properties</subject><subject>Polymers</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>Spectra</subject><subject>Spectrum analysis</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1km1rFDEUhQex4Fr94D8Y8IuCs81NMjOZj2Vta7FW8YWKICGTuTNNnU2myYx1_73Zbn1ZWQkkcHnO4SQ5SfIEyBwIoQcD2jnlQMW9ZAY5FxktGL-fzAhhNGNCiAfJwxCuSGRZXs2SrwtnR2MnN4X0Rn3HtFcBfWpsM2ls0vHS-CZzvokz62xvLCqfumE0WvXp4N2AfjQYUtem2q1F0axLB9evlujDo2SvVX3Ax3fnfvLp-Ojj4lV29vbkdHF4lukC1hkbDhqIojWhXEFJykronNASGqp4oZjiVcualhdE1W2pEFhT1chAtFTUFWH7ybONb0x0PWEY5dIEjX2vLMabSShzlgMUOYvo03_QKzd5G9NFCooSAPLqD9WpHqWxrRu90mtTecgZEEE5KyOV7aA6tOhV7yy2Jo63-PkOPq4Gl0bvFDzfEkRmxB9jp6YQ5OmH99vsi7_Yegrxr0Lcgukux7CR7LLW3oXgsZWDN0vlVxKIXFdJxirJ2ypF9mDD3sR8q_-D8t3R-S_F3cuYEAP_Vij_TRYlK3N5cX4iL16-_lK8EUR-Zj8BP9TWrw</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Pramodini, S.</creator><creator>Poornesh, P.</creator><general>Blackwell Publishing Ltd</general><general>Society of Plastics Engineers, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>201510</creationdate><title>Continuous wave laser induced third-order nonlinear optical properties of conducting polymers</title><author>Pramodini, S. ; Poornesh, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6148-2d41c10a2b024a170798c50271d2a46a3a49f3df460abf7ae13d9be318f28b903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Absorption spectra</topic><topic>Analysis</topic><topic>Conducting polymers</topic><topic>Conjugation</topic><topic>Constraining</topic><topic>Continuous wave lasers</topic><topic>Diffraction</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Nonlinearity</topic><topic>Optical properties</topic><topic>Polymers</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>Spectra</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pramodini, S.</creatorcontrib><creatorcontrib>Poornesh, P.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pramodini, S.</au><au>Poornesh, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous wave laser induced third-order nonlinear optical properties of conducting polymers</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2015-10</date><risdate>2015</risdate><volume>55</volume><issue>10</issue><spage>2396</spage><epage>2402</epage><pages>2396-2402</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>We report the studies on the third‐order optical nonlinearity and optical power limiting properties of conducting polymers viz., poly(o‐anisidine) and polypyrrole. Continuous wave (CW) He–Ne laser operating at 633 nm was used as the source of excitation. Ultraviolet‐Visible (UV–VIS) spectroscopy measurement reveals that the absorption bands are continuous and wide and hence can be used for photovoltaic applications. Fourier transform infrared spectroscopy (FTIR) was performed to elucidate the structure of polymers. Z‐scan technique was employed to determine the real and imaginary parts of third‐order nonlinear susceptibility χ(3), nonlinear absorption coefficient βeff, and nonlinear index of refraction n2. The estimated values of βeff, n2, and χ(3) are of the order of 10−2 cm/W, 10−5 esu, and 10−7 esu, respectively. The presence of large number of electron donating groups in the structure, leads to efficient charge transfer and results in the increase in conjugation length. The increase in conjugation length in turn increases the χ(3) value. Induced self‐diffraction rings were observed when the samples were exposed to laser beam due to thermal lensing and refractive index change. Good optical limiting and clamping behavior was achieved for various sample concentrations. These studies indicate that the polymers are a suitable candidate for photonic applications. POLYM. ENG. SCI., 55:2396–2402, 2015. © 2015 Society of Plastics Engineers</abstract><cop>Newtown</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pen.24128</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2015-10, Vol.55 (10), p.2396-2402
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_miscellaneous_1753511653
source Wiley Online Library Journals Frontfile Complete
subjects Absorption spectra
Analysis
Conducting polymers
Conjugation
Constraining
Continuous wave lasers
Diffraction
Fourier transforms
Infrared spectroscopy
Nonlinearity
Optical properties
Polymers
Refractive index
Refractivity
Spectra
Spectrum analysis
title Continuous wave laser induced third-order nonlinear optical properties of conducting polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20wave%20laser%20induced%20third-order%20nonlinear%20optical%20properties%20of%20conducting%20polymers&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Pramodini,%20S.&rft.date=2015-10&rft.volume=55&rft.issue=10&rft.spage=2396&rft.epage=2402&rft.pages=2396-2402&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.24128&rft_dat=%3Cgale_proqu%3EA431082437%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1716711159&rft_id=info:pmid/&rft_galeid=A431082437&rfr_iscdi=true