On the lognormality of historical magnetic storm intensity statistics: Implications for extreme-event probabilities

An examination is made of the hypothesis that the statistics of magnetic storm maximum intensities are the realization of a lognormal stochastic process. Weighted least squares and maximum likelihood methods are used to fit lognormal functions to −Dst storm time maxima for years 1957–2012; bootstrap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2015-08, Vol.42 (16), p.6544-6553
Hauptverfasser: Love, Jeffrey J., Rigler, E. Joshua, Pulkkinen, Antti, Riley, Pete
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6553
container_issue 16
container_start_page 6544
container_title Geophysical research letters
container_volume 42
creator Love, Jeffrey J.
Rigler, E. Joshua
Pulkkinen, Antti
Riley, Pete
description An examination is made of the hypothesis that the statistics of magnetic storm maximum intensities are the realization of a lognormal stochastic process. Weighted least squares and maximum likelihood methods are used to fit lognormal functions to −Dst storm time maxima for years 1957–2012; bootstrap analysis is used to established confidence limits on forecasts. Both methods provide fits that are reasonably consistent with the data; both methods also provide fits that are superior to those that can be made with a power‐law function. In general, the maximum likelihood method provides forecasts having tighter confidence intervals than those provided by weighted least squares. From extrapolation of maximum likelihood fits: a magnetic storm with intensity exceeding that of the 1859 Carrington event, −Dst ≥ 850 nT, occurs about 1.13 times per century and a wide 95% confidence interval of [0.42, 2.41] times per century; a 100 year magnetic storm is identified as having a −Dst ≥ 880 nT (greater than Carrington) but a wide 95% confidence interval of [490, 1187] nT. Key Points Storm occurrence might be a lognormal process Storm occurrence is not well modeled as a power‐law process Confidence limits on forecasts remain wide due to few data
doi_str_mv 10.1002/2015GL064842
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753510170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3807479681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6125-47ee3c375cfb473e6f5dace31ee03ad0e87521040d969cb36eb89c1bf918b3bc3</originalsourceid><addsrcrecordid>eNqN0U2LFDEQBuBGFBxXb_6AgBcPtla-u73JquNK44KueAzpTPVu1u5kNsnozr83w4iIh8VTQniqisrbNE8pvKQA7BUDKtcDKNEJdq9Z0V6ItgPQ95sVQF_vTKuHzaOcrwGAA6erJp8HUq6QzPEyxLTY2Zc9iRO58rnE5J2dyWIvAxbvyOFlIT4UDPnAcrGlMu_ya3K2bOeqi48hkykmgrcl4YIt_sBQyDbF0Y6-dveYHzcPJjtnfPL7PGm-vn93cfqhHc7XZ6dvhtYpymQrNCJ3XEs3jUJzVJPcWIecIgK3G8BOS0ZBwKZXvRu5wrHrHR2nnnYjHx0_aZ4f-9bpNzvMxSw-O5xnGzDusqFackmBavgPyllHBROq0mf_0Ou4S6EuYmhPoesUE-JOpSkTwDWXVb04Kpdizgkns01-sWlvKJhDpObvSCtnR_7Tz7i_05r150FyJg8z2mNRjQpv_xTZ9N0oXX_XfPu0NvrtoC-6j8p84b8AHdqxyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1712403735</pqid></control><display><type>article</type><title>On the lognormality of historical magnetic storm intensity statistics: Implications for extreme-event probabilities</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Love, Jeffrey J. ; Rigler, E. Joshua ; Pulkkinen, Antti ; Riley, Pete</creator><creatorcontrib>Love, Jeffrey J. ; Rigler, E. Joshua ; Pulkkinen, Antti ; Riley, Pete</creatorcontrib><description>An examination is made of the hypothesis that the statistics of magnetic storm maximum intensities are the realization of a lognormal stochastic process. Weighted least squares and maximum likelihood methods are used to fit lognormal functions to −Dst storm time maxima for years 1957–2012; bootstrap analysis is used to established confidence limits on forecasts. Both methods provide fits that are reasonably consistent with the data; both methods also provide fits that are superior to those that can be made with a power‐law function. In general, the maximum likelihood method provides forecasts having tighter confidence intervals than those provided by weighted least squares. From extrapolation of maximum likelihood fits: a magnetic storm with intensity exceeding that of the 1859 Carrington event, −Dst ≥ 850 nT, occurs about 1.13 times per century and a wide 95% confidence interval of [0.42, 2.41] times per century; a 100 year magnetic storm is identified as having a −Dst ≥ 880 nT (greater than Carrington) but a wide 95% confidence interval of [490, 1187] nT. Key Points Storm occurrence might be a lognormal process Storm occurrence is not well modeled as a power‐law process Confidence limits on forecasts remain wide due to few data</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2015GL064842</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Confidence intervals ; Confidence limits ; Data ; Econometrics ; Electric power generation ; Estimating techniques ; Extrapolation ; extreme event ; Extreme values ; forecast and prediction ; Geomagnetic storms ; Historic ; Identification ; Least squares method ; magnetic storm ; Magnetic storms ; Mathematical models ; Maximum likelihood method ; natural hazard ; Probability theory ; space weather ; Statistical analysis ; Statistical methods ; Statistics ; Stochastic processes ; Storms</subject><ispartof>Geophysical research letters, 2015-08, Vol.42 (16), p.6544-6553</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6125-47ee3c375cfb473e6f5dace31ee03ad0e87521040d969cb36eb89c1bf918b3bc3</citedby><cites>FETCH-LOGICAL-c6125-47ee3c375cfb473e6f5dace31ee03ad0e87521040d969cb36eb89c1bf918b3bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GL064842$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GL064842$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,11505,27915,27916,45565,45566,46400,46459,46824,46883</link.rule.ids></links><search><creatorcontrib>Love, Jeffrey J.</creatorcontrib><creatorcontrib>Rigler, E. Joshua</creatorcontrib><creatorcontrib>Pulkkinen, Antti</creatorcontrib><creatorcontrib>Riley, Pete</creatorcontrib><title>On the lognormality of historical magnetic storm intensity statistics: Implications for extreme-event probabilities</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>An examination is made of the hypothesis that the statistics of magnetic storm maximum intensities are the realization of a lognormal stochastic process. Weighted least squares and maximum likelihood methods are used to fit lognormal functions to −Dst storm time maxima for years 1957–2012; bootstrap analysis is used to established confidence limits on forecasts. Both methods provide fits that are reasonably consistent with the data; both methods also provide fits that are superior to those that can be made with a power‐law function. In general, the maximum likelihood method provides forecasts having tighter confidence intervals than those provided by weighted least squares. From extrapolation of maximum likelihood fits: a magnetic storm with intensity exceeding that of the 1859 Carrington event, −Dst ≥ 850 nT, occurs about 1.13 times per century and a wide 95% confidence interval of [0.42, 2.41] times per century; a 100 year magnetic storm is identified as having a −Dst ≥ 880 nT (greater than Carrington) but a wide 95% confidence interval of [490, 1187] nT. Key Points Storm occurrence might be a lognormal process Storm occurrence is not well modeled as a power‐law process Confidence limits on forecasts remain wide due to few data</description><subject>Confidence intervals</subject><subject>Confidence limits</subject><subject>Data</subject><subject>Econometrics</subject><subject>Electric power generation</subject><subject>Estimating techniques</subject><subject>Extrapolation</subject><subject>extreme event</subject><subject>Extreme values</subject><subject>forecast and prediction</subject><subject>Geomagnetic storms</subject><subject>Historic</subject><subject>Identification</subject><subject>Least squares method</subject><subject>magnetic storm</subject><subject>Magnetic storms</subject><subject>Mathematical models</subject><subject>Maximum likelihood method</subject><subject>natural hazard</subject><subject>Probability theory</subject><subject>space weather</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Stochastic processes</subject><subject>Storms</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0U2LFDEQBuBGFBxXb_6AgBcPtla-u73JquNK44KueAzpTPVu1u5kNsnozr83w4iIh8VTQniqisrbNE8pvKQA7BUDKtcDKNEJdq9Z0V6ItgPQ95sVQF_vTKuHzaOcrwGAA6erJp8HUq6QzPEyxLTY2Zc9iRO58rnE5J2dyWIvAxbvyOFlIT4UDPnAcrGlMu_ya3K2bOeqi48hkykmgrcl4YIt_sBQyDbF0Y6-dveYHzcPJjtnfPL7PGm-vn93cfqhHc7XZ6dvhtYpymQrNCJ3XEs3jUJzVJPcWIecIgK3G8BOS0ZBwKZXvRu5wrHrHR2nnnYjHx0_aZ4f-9bpNzvMxSw-O5xnGzDusqFackmBavgPyllHBROq0mf_0Ou4S6EuYmhPoesUE-JOpSkTwDWXVb04Kpdizgkns01-sWlvKJhDpObvSCtnR_7Tz7i_05r150FyJg8z2mNRjQpv_xTZ9N0oXX_XfPu0NvrtoC-6j8p84b8AHdqxyQ</recordid><startdate>20150828</startdate><enddate>20150828</enddate><creator>Love, Jeffrey J.</creator><creator>Rigler, E. Joshua</creator><creator>Pulkkinen, Antti</creator><creator>Riley, Pete</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20150828</creationdate><title>On the lognormality of historical magnetic storm intensity statistics: Implications for extreme-event probabilities</title><author>Love, Jeffrey J. ; Rigler, E. Joshua ; Pulkkinen, Antti ; Riley, Pete</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6125-47ee3c375cfb473e6f5dace31ee03ad0e87521040d969cb36eb89c1bf918b3bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Confidence intervals</topic><topic>Confidence limits</topic><topic>Data</topic><topic>Econometrics</topic><topic>Electric power generation</topic><topic>Estimating techniques</topic><topic>Extrapolation</topic><topic>extreme event</topic><topic>Extreme values</topic><topic>forecast and prediction</topic><topic>Geomagnetic storms</topic><topic>Historic</topic><topic>Identification</topic><topic>Least squares method</topic><topic>magnetic storm</topic><topic>Magnetic storms</topic><topic>Mathematical models</topic><topic>Maximum likelihood method</topic><topic>natural hazard</topic><topic>Probability theory</topic><topic>space weather</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Stochastic processes</topic><topic>Storms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Love, Jeffrey J.</creatorcontrib><creatorcontrib>Rigler, E. Joshua</creatorcontrib><creatorcontrib>Pulkkinen, Antti</creatorcontrib><creatorcontrib>Riley, Pete</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Love, Jeffrey J.</au><au>Rigler, E. Joshua</au><au>Pulkkinen, Antti</au><au>Riley, Pete</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the lognormality of historical magnetic storm intensity statistics: Implications for extreme-event probabilities</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2015-08-28</date><risdate>2015</risdate><volume>42</volume><issue>16</issue><spage>6544</spage><epage>6553</epage><pages>6544-6553</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>An examination is made of the hypothesis that the statistics of magnetic storm maximum intensities are the realization of a lognormal stochastic process. Weighted least squares and maximum likelihood methods are used to fit lognormal functions to −Dst storm time maxima for years 1957–2012; bootstrap analysis is used to established confidence limits on forecasts. Both methods provide fits that are reasonably consistent with the data; both methods also provide fits that are superior to those that can be made with a power‐law function. In general, the maximum likelihood method provides forecasts having tighter confidence intervals than those provided by weighted least squares. From extrapolation of maximum likelihood fits: a magnetic storm with intensity exceeding that of the 1859 Carrington event, −Dst ≥ 850 nT, occurs about 1.13 times per century and a wide 95% confidence interval of [0.42, 2.41] times per century; a 100 year magnetic storm is identified as having a −Dst ≥ 880 nT (greater than Carrington) but a wide 95% confidence interval of [490, 1187] nT. Key Points Storm occurrence might be a lognormal process Storm occurrence is not well modeled as a power‐law process Confidence limits on forecasts remain wide due to few data</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015GL064842</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2015-08, Vol.42 (16), p.6544-6553
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1753510170
source Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library
subjects Confidence intervals
Confidence limits
Data
Econometrics
Electric power generation
Estimating techniques
Extrapolation
extreme event
Extreme values
forecast and prediction
Geomagnetic storms
Historic
Identification
Least squares method
magnetic storm
Magnetic storms
Mathematical models
Maximum likelihood method
natural hazard
Probability theory
space weather
Statistical analysis
Statistical methods
Statistics
Stochastic processes
Storms
title On the lognormality of historical magnetic storm intensity statistics: Implications for extreme-event probabilities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20lognormality%20of%20historical%20magnetic%20storm%20intensity%20statistics:%20Implications%20for%20extreme-event%20probabilities&rft.jtitle=Geophysical%20research%20letters&rft.au=Love,%20Jeffrey%20J.&rft.date=2015-08-28&rft.volume=42&rft.issue=16&rft.spage=6544&rft.epage=6553&rft.pages=6544-6553&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2015GL064842&rft_dat=%3Cproquest_cross%3E3807479681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1712403735&rft_id=info:pmid/&rfr_iscdi=true