Effect of Compressive Force on Unbinding Specific Protein–Ligand Complexes with Force Spectroscopy

Atomic force microscopy (AFM) is used extensively for the investigation of noncovalent molecular association. Although the technique is used to derive various types of information, in almost all instances the frequency of complex formation, the magnitude of rupture forces, and the shape of the force...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2013-05, Vol.117 (17), p.4755-4762
Hauptverfasser: Bowers, Carleen M, Carlson, David A, Rivera, Monica, Clark, Robert L, Toone, Eric J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4762
container_issue 17
container_start_page 4755
container_title The journal of physical chemistry. B
container_volume 117
creator Bowers, Carleen M
Carlson, David A
Rivera, Monica
Clark, Robert L
Toone, Eric J
description Atomic force microscopy (AFM) is used extensively for the investigation of noncovalent molecular association. Although the technique is used to derive various types of information, in almost all instances the frequency of complex formation, the magnitude of rupture forces, and the shape of the force–distance curve are used to determine the behavior of the system. We have used AFM to consider the effect of contact force on the unbinding profiles of lactose–galectin-3, as well as the control pairs lactose–KDPG aldolase, and mannose–galectin-3, where the interacting species show negligible solution-phase affinity. Increased contact forces (>250 pN) resulted in increased probabilitites of binding and decreased blocking efficiencies for the cognate ligand–receptor pair lactose–G3. Increased contact force applied to two control systems with no known affinity, mannose–G3 and lactose–KDPG aldolase, resulted in nonspecific ruptures that were indistinguishable from those of specific lactose–G3 interactions. These results demonstrate that careful experimental design is vital to the production of interpretable data, and suggest that contact force minimization is an effective technique for probing the unbinding forces and rupture lengths of only specific ligand–receptor interactions.
doi_str_mv 10.1021/jp309393s
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753510144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753510144</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-e2527e168627461c0ae1e355fe1e39dde4239ccb4dea0645fa8a99e4786e51353</originalsourceid><addsrcrecordid>eNqF0MlOwzAQBmALgVgKB14A5YIEh4J3J0dUsUmVQIKeI9cZg6vUDnbKcuMdeEOehBQCXJA4WOPDN2PPj9AuwUcEU3I8axguWMHSCtokguJhd9Rqf5cEyw20ldIMYypoLtfRBmWCKaroJqpOrQXTZsFmozBvIqTkHiE7C9FAFnw28VPnK-fvspsGjLPOZNcxtOD8--vb2N1pX3021vAMKXty7X3fu-RtDMmE5mUbrVldJ9jp6wBNzk5vRxfD8dX55ehkPNRM5e0Quu8pIDKXVHFJDNZAgAlhl6WoKuCUFcZMeQUaSy6sznVRAFe5BEG6lQbo4GtuE8PDAlJbzl0yUNfaQ1ikkijBBMGE8_8p4zkvVIFZRw-_qOnWSRFs2UQ31_GlJLhc5l_-5N_ZvX7sYjqH6kd-B96B_R7oZHRto_bGpV-nmMxzJX-dNqmchUX0XXB_PPgBDRqZwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1348497903</pqid></control><display><type>article</type><title>Effect of Compressive Force on Unbinding Specific Protein–Ligand Complexes with Force Spectroscopy</title><source>MEDLINE</source><source>ACS Publications</source><creator>Bowers, Carleen M ; Carlson, David A ; Rivera, Monica ; Clark, Robert L ; Toone, Eric J</creator><creatorcontrib>Bowers, Carleen M ; Carlson, David A ; Rivera, Monica ; Clark, Robert L ; Toone, Eric J</creatorcontrib><description>Atomic force microscopy (AFM) is used extensively for the investigation of noncovalent molecular association. Although the technique is used to derive various types of information, in almost all instances the frequency of complex formation, the magnitude of rupture forces, and the shape of the force–distance curve are used to determine the behavior of the system. We have used AFM to consider the effect of contact force on the unbinding profiles of lactose–galectin-3, as well as the control pairs lactose–KDPG aldolase, and mannose–galectin-3, where the interacting species show negligible solution-phase affinity. Increased contact forces (&gt;250 pN) resulted in increased probabilitites of binding and decreased blocking efficiencies for the cognate ligand–receptor pair lactose–G3. Increased contact force applied to two control systems with no known affinity, mannose–G3 and lactose–KDPG aldolase, resulted in nonspecific ruptures that were indistinguishable from those of specific lactose–G3 interactions. These results demonstrate that careful experimental design is vital to the production of interpretable data, and suggest that contact force minimization is an effective technique for probing the unbinding forces and rupture lengths of only specific ligand–receptor interactions.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp309393s</identifier><identifier>PMID: 23537272</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Affinity ; Aldehyde-Lyases - chemistry ; Aldehyde-Lyases - genetics ; Aldehyde-Lyases - metabolism ; Aldolase ; Animals ; Atomic force microscopy ; Biological and medical sciences ; Blocking ; Contact ; Contact force ; Fundamental and applied biological sciences. Psychology ; Galectin 3 - chemistry ; Galectin 3 - genetics ; Galectin 3 - metabolism ; Histidine - chemistry ; Histidine - genetics ; Histidine - metabolism ; Immobilized Proteins - chemistry ; Intermolecular phenomena ; Lactose - chemistry ; Mannose - chemistry ; Mice ; Microscopy, Atomic Force ; Molecular biophysics ; Oligopeptides - chemistry ; Oligopeptides - genetics ; Oligopeptides - metabolism ; Optimization ; Recombinant Fusion Proteins - biosynthesis ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Rupture ; Silicon - chemistry ; Silicon Compounds - chemistry</subject><ispartof>The journal of physical chemistry. B, 2013-05, Vol.117 (17), p.4755-4762</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-e2527e168627461c0ae1e355fe1e39dde4239ccb4dea0645fa8a99e4786e51353</citedby><cites>FETCH-LOGICAL-a378t-e2527e168627461c0ae1e355fe1e39dde4239ccb4dea0645fa8a99e4786e51353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp309393s$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp309393s$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27368876$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23537272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bowers, Carleen M</creatorcontrib><creatorcontrib>Carlson, David A</creatorcontrib><creatorcontrib>Rivera, Monica</creatorcontrib><creatorcontrib>Clark, Robert L</creatorcontrib><creatorcontrib>Toone, Eric J</creatorcontrib><title>Effect of Compressive Force on Unbinding Specific Protein–Ligand Complexes with Force Spectroscopy</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Atomic force microscopy (AFM) is used extensively for the investigation of noncovalent molecular association. Although the technique is used to derive various types of information, in almost all instances the frequency of complex formation, the magnitude of rupture forces, and the shape of the force–distance curve are used to determine the behavior of the system. We have used AFM to consider the effect of contact force on the unbinding profiles of lactose–galectin-3, as well as the control pairs lactose–KDPG aldolase, and mannose–galectin-3, where the interacting species show negligible solution-phase affinity. Increased contact forces (&gt;250 pN) resulted in increased probabilitites of binding and decreased blocking efficiencies for the cognate ligand–receptor pair lactose–G3. Increased contact force applied to two control systems with no known affinity, mannose–G3 and lactose–KDPG aldolase, resulted in nonspecific ruptures that were indistinguishable from those of specific lactose–G3 interactions. These results demonstrate that careful experimental design is vital to the production of interpretable data, and suggest that contact force minimization is an effective technique for probing the unbinding forces and rupture lengths of only specific ligand–receptor interactions.</description><subject>Affinity</subject><subject>Aldehyde-Lyases - chemistry</subject><subject>Aldehyde-Lyases - genetics</subject><subject>Aldehyde-Lyases - metabolism</subject><subject>Aldolase</subject><subject>Animals</subject><subject>Atomic force microscopy</subject><subject>Biological and medical sciences</subject><subject>Blocking</subject><subject>Contact</subject><subject>Contact force</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Galectin 3 - chemistry</subject><subject>Galectin 3 - genetics</subject><subject>Galectin 3 - metabolism</subject><subject>Histidine - chemistry</subject><subject>Histidine - genetics</subject><subject>Histidine - metabolism</subject><subject>Immobilized Proteins - chemistry</subject><subject>Intermolecular phenomena</subject><subject>Lactose - chemistry</subject><subject>Mannose - chemistry</subject><subject>Mice</subject><subject>Microscopy, Atomic Force</subject><subject>Molecular biophysics</subject><subject>Oligopeptides - chemistry</subject><subject>Oligopeptides - genetics</subject><subject>Oligopeptides - metabolism</subject><subject>Optimization</subject><subject>Recombinant Fusion Proteins - biosynthesis</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Rupture</subject><subject>Silicon - chemistry</subject><subject>Silicon Compounds - chemistry</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0MlOwzAQBmALgVgKB14A5YIEh4J3J0dUsUmVQIKeI9cZg6vUDnbKcuMdeEOehBQCXJA4WOPDN2PPj9AuwUcEU3I8axguWMHSCtokguJhd9Rqf5cEyw20ldIMYypoLtfRBmWCKaroJqpOrQXTZsFmozBvIqTkHiE7C9FAFnw28VPnK-fvspsGjLPOZNcxtOD8--vb2N1pX3021vAMKXty7X3fu-RtDMmE5mUbrVldJ9jp6wBNzk5vRxfD8dX55ehkPNRM5e0Quu8pIDKXVHFJDNZAgAlhl6WoKuCUFcZMeQUaSy6sznVRAFe5BEG6lQbo4GtuE8PDAlJbzl0yUNfaQ1ikkijBBMGE8_8p4zkvVIFZRw-_qOnWSRFs2UQ31_GlJLhc5l_-5N_ZvX7sYjqH6kd-B96B_R7oZHRto_bGpV-nmMxzJX-dNqmchUX0XXB_PPgBDRqZwg</recordid><startdate>20130502</startdate><enddate>20130502</enddate><creator>Bowers, Carleen M</creator><creator>Carlson, David A</creator><creator>Rivera, Monica</creator><creator>Clark, Robert L</creator><creator>Toone, Eric J</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130502</creationdate><title>Effect of Compressive Force on Unbinding Specific Protein–Ligand Complexes with Force Spectroscopy</title><author>Bowers, Carleen M ; Carlson, David A ; Rivera, Monica ; Clark, Robert L ; Toone, Eric J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-e2527e168627461c0ae1e355fe1e39dde4239ccb4dea0645fa8a99e4786e51353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Affinity</topic><topic>Aldehyde-Lyases - chemistry</topic><topic>Aldehyde-Lyases - genetics</topic><topic>Aldehyde-Lyases - metabolism</topic><topic>Aldolase</topic><topic>Animals</topic><topic>Atomic force microscopy</topic><topic>Biological and medical sciences</topic><topic>Blocking</topic><topic>Contact</topic><topic>Contact force</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Galectin 3 - chemistry</topic><topic>Galectin 3 - genetics</topic><topic>Galectin 3 - metabolism</topic><topic>Histidine - chemistry</topic><topic>Histidine - genetics</topic><topic>Histidine - metabolism</topic><topic>Immobilized Proteins - chemistry</topic><topic>Intermolecular phenomena</topic><topic>Lactose - chemistry</topic><topic>Mannose - chemistry</topic><topic>Mice</topic><topic>Microscopy, Atomic Force</topic><topic>Molecular biophysics</topic><topic>Oligopeptides - chemistry</topic><topic>Oligopeptides - genetics</topic><topic>Oligopeptides - metabolism</topic><topic>Optimization</topic><topic>Recombinant Fusion Proteins - biosynthesis</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Rupture</topic><topic>Silicon - chemistry</topic><topic>Silicon Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowers, Carleen M</creatorcontrib><creatorcontrib>Carlson, David A</creatorcontrib><creatorcontrib>Rivera, Monica</creatorcontrib><creatorcontrib>Clark, Robert L</creatorcontrib><creatorcontrib>Toone, Eric J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowers, Carleen M</au><au>Carlson, David A</au><au>Rivera, Monica</au><au>Clark, Robert L</au><au>Toone, Eric J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Compressive Force on Unbinding Specific Protein–Ligand Complexes with Force Spectroscopy</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2013-05-02</date><risdate>2013</risdate><volume>117</volume><issue>17</issue><spage>4755</spage><epage>4762</epage><pages>4755-4762</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Atomic force microscopy (AFM) is used extensively for the investigation of noncovalent molecular association. Although the technique is used to derive various types of information, in almost all instances the frequency of complex formation, the magnitude of rupture forces, and the shape of the force–distance curve are used to determine the behavior of the system. We have used AFM to consider the effect of contact force on the unbinding profiles of lactose–galectin-3, as well as the control pairs lactose–KDPG aldolase, and mannose–galectin-3, where the interacting species show negligible solution-phase affinity. Increased contact forces (&gt;250 pN) resulted in increased probabilitites of binding and decreased blocking efficiencies for the cognate ligand–receptor pair lactose–G3. Increased contact force applied to two control systems with no known affinity, mannose–G3 and lactose–KDPG aldolase, resulted in nonspecific ruptures that were indistinguishable from those of specific lactose–G3 interactions. These results demonstrate that careful experimental design is vital to the production of interpretable data, and suggest that contact force minimization is an effective technique for probing the unbinding forces and rupture lengths of only specific ligand–receptor interactions.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23537272</pmid><doi>10.1021/jp309393s</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2013-05, Vol.117 (17), p.4755-4762
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_1753510144
source MEDLINE; ACS Publications
subjects Affinity
Aldehyde-Lyases - chemistry
Aldehyde-Lyases - genetics
Aldehyde-Lyases - metabolism
Aldolase
Animals
Atomic force microscopy
Biological and medical sciences
Blocking
Contact
Contact force
Fundamental and applied biological sciences. Psychology
Galectin 3 - chemistry
Galectin 3 - genetics
Galectin 3 - metabolism
Histidine - chemistry
Histidine - genetics
Histidine - metabolism
Immobilized Proteins - chemistry
Intermolecular phenomena
Lactose - chemistry
Mannose - chemistry
Mice
Microscopy, Atomic Force
Molecular biophysics
Oligopeptides - chemistry
Oligopeptides - genetics
Oligopeptides - metabolism
Optimization
Recombinant Fusion Proteins - biosynthesis
Recombinant Fusion Proteins - chemistry
Recombinant Fusion Proteins - genetics
Rupture
Silicon - chemistry
Silicon Compounds - chemistry
title Effect of Compressive Force on Unbinding Specific Protein–Ligand Complexes with Force Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Compressive%20Force%20on%20Unbinding%20Specific%20Protein%E2%80%93Ligand%20Complexes%20with%20Force%20Spectroscopy&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Bowers,%20Carleen%20M&rft.date=2013-05-02&rft.volume=117&rft.issue=17&rft.spage=4755&rft.epage=4762&rft.pages=4755-4762&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp309393s&rft_dat=%3Cproquest_cross%3E1753510144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1348497903&rft_id=info:pmid/23537272&rfr_iscdi=true