Effect of Compressive Force on Unbinding Specific Protein–Ligand Complexes with Force Spectroscopy
Atomic force microscopy (AFM) is used extensively for the investigation of noncovalent molecular association. Although the technique is used to derive various types of information, in almost all instances the frequency of complex formation, the magnitude of rupture forces, and the shape of the force...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2013-05, Vol.117 (17), p.4755-4762 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4762 |
---|---|
container_issue | 17 |
container_start_page | 4755 |
container_title | The journal of physical chemistry. B |
container_volume | 117 |
creator | Bowers, Carleen M Carlson, David A Rivera, Monica Clark, Robert L Toone, Eric J |
description | Atomic force microscopy (AFM) is used extensively for the investigation of noncovalent molecular association. Although the technique is used to derive various types of information, in almost all instances the frequency of complex formation, the magnitude of rupture forces, and the shape of the force–distance curve are used to determine the behavior of the system. We have used AFM to consider the effect of contact force on the unbinding profiles of lactose–galectin-3, as well as the control pairs lactose–KDPG aldolase, and mannose–galectin-3, where the interacting species show negligible solution-phase affinity. Increased contact forces (>250 pN) resulted in increased probabilitites of binding and decreased blocking efficiencies for the cognate ligand–receptor pair lactose–G3. Increased contact force applied to two control systems with no known affinity, mannose–G3 and lactose–KDPG aldolase, resulted in nonspecific ruptures that were indistinguishable from those of specific lactose–G3 interactions. These results demonstrate that careful experimental design is vital to the production of interpretable data, and suggest that contact force minimization is an effective technique for probing the unbinding forces and rupture lengths of only specific ligand–receptor interactions. |
doi_str_mv | 10.1021/jp309393s |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753510144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753510144</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-e2527e168627461c0ae1e355fe1e39dde4239ccb4dea0645fa8a99e4786e51353</originalsourceid><addsrcrecordid>eNqF0MlOwzAQBmALgVgKB14A5YIEh4J3J0dUsUmVQIKeI9cZg6vUDnbKcuMdeEOehBQCXJA4WOPDN2PPj9AuwUcEU3I8axguWMHSCtokguJhd9Rqf5cEyw20ldIMYypoLtfRBmWCKaroJqpOrQXTZsFmozBvIqTkHiE7C9FAFnw28VPnK-fvspsGjLPOZNcxtOD8--vb2N1pX3021vAMKXty7X3fu-RtDMmE5mUbrVldJ9jp6wBNzk5vRxfD8dX55ehkPNRM5e0Quu8pIDKXVHFJDNZAgAlhl6WoKuCUFcZMeQUaSy6sznVRAFe5BEG6lQbo4GtuE8PDAlJbzl0yUNfaQ1ikkijBBMGE8_8p4zkvVIFZRw-_qOnWSRFs2UQ31_GlJLhc5l_-5N_ZvX7sYjqH6kd-B96B_R7oZHRto_bGpV-nmMxzJX-dNqmchUX0XXB_PPgBDRqZwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1348497903</pqid></control><display><type>article</type><title>Effect of Compressive Force on Unbinding Specific Protein–Ligand Complexes with Force Spectroscopy</title><source>MEDLINE</source><source>ACS Publications</source><creator>Bowers, Carleen M ; Carlson, David A ; Rivera, Monica ; Clark, Robert L ; Toone, Eric J</creator><creatorcontrib>Bowers, Carleen M ; Carlson, David A ; Rivera, Monica ; Clark, Robert L ; Toone, Eric J</creatorcontrib><description>Atomic force microscopy (AFM) is used extensively for the investigation of noncovalent molecular association. Although the technique is used to derive various types of information, in almost all instances the frequency of complex formation, the magnitude of rupture forces, and the shape of the force–distance curve are used to determine the behavior of the system. We have used AFM to consider the effect of contact force on the unbinding profiles of lactose–galectin-3, as well as the control pairs lactose–KDPG aldolase, and mannose–galectin-3, where the interacting species show negligible solution-phase affinity. Increased contact forces (>250 pN) resulted in increased probabilitites of binding and decreased blocking efficiencies for the cognate ligand–receptor pair lactose–G3. Increased contact force applied to two control systems with no known affinity, mannose–G3 and lactose–KDPG aldolase, resulted in nonspecific ruptures that were indistinguishable from those of specific lactose–G3 interactions. These results demonstrate that careful experimental design is vital to the production of interpretable data, and suggest that contact force minimization is an effective technique for probing the unbinding forces and rupture lengths of only specific ligand–receptor interactions.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp309393s</identifier><identifier>PMID: 23537272</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Affinity ; Aldehyde-Lyases - chemistry ; Aldehyde-Lyases - genetics ; Aldehyde-Lyases - metabolism ; Aldolase ; Animals ; Atomic force microscopy ; Biological and medical sciences ; Blocking ; Contact ; Contact force ; Fundamental and applied biological sciences. Psychology ; Galectin 3 - chemistry ; Galectin 3 - genetics ; Galectin 3 - metabolism ; Histidine - chemistry ; Histidine - genetics ; Histidine - metabolism ; Immobilized Proteins - chemistry ; Intermolecular phenomena ; Lactose - chemistry ; Mannose - chemistry ; Mice ; Microscopy, Atomic Force ; Molecular biophysics ; Oligopeptides - chemistry ; Oligopeptides - genetics ; Oligopeptides - metabolism ; Optimization ; Recombinant Fusion Proteins - biosynthesis ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Rupture ; Silicon - chemistry ; Silicon Compounds - chemistry</subject><ispartof>The journal of physical chemistry. B, 2013-05, Vol.117 (17), p.4755-4762</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-e2527e168627461c0ae1e355fe1e39dde4239ccb4dea0645fa8a99e4786e51353</citedby><cites>FETCH-LOGICAL-a378t-e2527e168627461c0ae1e355fe1e39dde4239ccb4dea0645fa8a99e4786e51353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp309393s$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp309393s$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27368876$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23537272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bowers, Carleen M</creatorcontrib><creatorcontrib>Carlson, David A</creatorcontrib><creatorcontrib>Rivera, Monica</creatorcontrib><creatorcontrib>Clark, Robert L</creatorcontrib><creatorcontrib>Toone, Eric J</creatorcontrib><title>Effect of Compressive Force on Unbinding Specific Protein–Ligand Complexes with Force Spectroscopy</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Atomic force microscopy (AFM) is used extensively for the investigation of noncovalent molecular association. Although the technique is used to derive various types of information, in almost all instances the frequency of complex formation, the magnitude of rupture forces, and the shape of the force–distance curve are used to determine the behavior of the system. We have used AFM to consider the effect of contact force on the unbinding profiles of lactose–galectin-3, as well as the control pairs lactose–KDPG aldolase, and mannose–galectin-3, where the interacting species show negligible solution-phase affinity. Increased contact forces (>250 pN) resulted in increased probabilitites of binding and decreased blocking efficiencies for the cognate ligand–receptor pair lactose–G3. Increased contact force applied to two control systems with no known affinity, mannose–G3 and lactose–KDPG aldolase, resulted in nonspecific ruptures that were indistinguishable from those of specific lactose–G3 interactions. These results demonstrate that careful experimental design is vital to the production of interpretable data, and suggest that contact force minimization is an effective technique for probing the unbinding forces and rupture lengths of only specific ligand–receptor interactions.</description><subject>Affinity</subject><subject>Aldehyde-Lyases - chemistry</subject><subject>Aldehyde-Lyases - genetics</subject><subject>Aldehyde-Lyases - metabolism</subject><subject>Aldolase</subject><subject>Animals</subject><subject>Atomic force microscopy</subject><subject>Biological and medical sciences</subject><subject>Blocking</subject><subject>Contact</subject><subject>Contact force</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Galectin 3 - chemistry</subject><subject>Galectin 3 - genetics</subject><subject>Galectin 3 - metabolism</subject><subject>Histidine - chemistry</subject><subject>Histidine - genetics</subject><subject>Histidine - metabolism</subject><subject>Immobilized Proteins - chemistry</subject><subject>Intermolecular phenomena</subject><subject>Lactose - chemistry</subject><subject>Mannose - chemistry</subject><subject>Mice</subject><subject>Microscopy, Atomic Force</subject><subject>Molecular biophysics</subject><subject>Oligopeptides - chemistry</subject><subject>Oligopeptides - genetics</subject><subject>Oligopeptides - metabolism</subject><subject>Optimization</subject><subject>Recombinant Fusion Proteins - biosynthesis</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Rupture</subject><subject>Silicon - chemistry</subject><subject>Silicon Compounds - chemistry</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0MlOwzAQBmALgVgKB14A5YIEh4J3J0dUsUmVQIKeI9cZg6vUDnbKcuMdeEOehBQCXJA4WOPDN2PPj9AuwUcEU3I8axguWMHSCtokguJhd9Rqf5cEyw20ldIMYypoLtfRBmWCKaroJqpOrQXTZsFmozBvIqTkHiE7C9FAFnw28VPnK-fvspsGjLPOZNcxtOD8--vb2N1pX3021vAMKXty7X3fu-RtDMmE5mUbrVldJ9jp6wBNzk5vRxfD8dX55ehkPNRM5e0Quu8pIDKXVHFJDNZAgAlhl6WoKuCUFcZMeQUaSy6sznVRAFe5BEG6lQbo4GtuE8PDAlJbzl0yUNfaQ1ikkijBBMGE8_8p4zkvVIFZRw-_qOnWSRFs2UQ31_GlJLhc5l_-5N_ZvX7sYjqH6kd-B96B_R7oZHRto_bGpV-nmMxzJX-dNqmchUX0XXB_PPgBDRqZwg</recordid><startdate>20130502</startdate><enddate>20130502</enddate><creator>Bowers, Carleen M</creator><creator>Carlson, David A</creator><creator>Rivera, Monica</creator><creator>Clark, Robert L</creator><creator>Toone, Eric J</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130502</creationdate><title>Effect of Compressive Force on Unbinding Specific Protein–Ligand Complexes with Force Spectroscopy</title><author>Bowers, Carleen M ; Carlson, David A ; Rivera, Monica ; Clark, Robert L ; Toone, Eric J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-e2527e168627461c0ae1e355fe1e39dde4239ccb4dea0645fa8a99e4786e51353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Affinity</topic><topic>Aldehyde-Lyases - chemistry</topic><topic>Aldehyde-Lyases - genetics</topic><topic>Aldehyde-Lyases - metabolism</topic><topic>Aldolase</topic><topic>Animals</topic><topic>Atomic force microscopy</topic><topic>Biological and medical sciences</topic><topic>Blocking</topic><topic>Contact</topic><topic>Contact force</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Galectin 3 - chemistry</topic><topic>Galectin 3 - genetics</topic><topic>Galectin 3 - metabolism</topic><topic>Histidine - chemistry</topic><topic>Histidine - genetics</topic><topic>Histidine - metabolism</topic><topic>Immobilized Proteins - chemistry</topic><topic>Intermolecular phenomena</topic><topic>Lactose - chemistry</topic><topic>Mannose - chemistry</topic><topic>Mice</topic><topic>Microscopy, Atomic Force</topic><topic>Molecular biophysics</topic><topic>Oligopeptides - chemistry</topic><topic>Oligopeptides - genetics</topic><topic>Oligopeptides - metabolism</topic><topic>Optimization</topic><topic>Recombinant Fusion Proteins - biosynthesis</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Rupture</topic><topic>Silicon - chemistry</topic><topic>Silicon Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowers, Carleen M</creatorcontrib><creatorcontrib>Carlson, David A</creatorcontrib><creatorcontrib>Rivera, Monica</creatorcontrib><creatorcontrib>Clark, Robert L</creatorcontrib><creatorcontrib>Toone, Eric J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowers, Carleen M</au><au>Carlson, David A</au><au>Rivera, Monica</au><au>Clark, Robert L</au><au>Toone, Eric J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Compressive Force on Unbinding Specific Protein–Ligand Complexes with Force Spectroscopy</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2013-05-02</date><risdate>2013</risdate><volume>117</volume><issue>17</issue><spage>4755</spage><epage>4762</epage><pages>4755-4762</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Atomic force microscopy (AFM) is used extensively for the investigation of noncovalent molecular association. Although the technique is used to derive various types of information, in almost all instances the frequency of complex formation, the magnitude of rupture forces, and the shape of the force–distance curve are used to determine the behavior of the system. We have used AFM to consider the effect of contact force on the unbinding profiles of lactose–galectin-3, as well as the control pairs lactose–KDPG aldolase, and mannose–galectin-3, where the interacting species show negligible solution-phase affinity. Increased contact forces (>250 pN) resulted in increased probabilitites of binding and decreased blocking efficiencies for the cognate ligand–receptor pair lactose–G3. Increased contact force applied to two control systems with no known affinity, mannose–G3 and lactose–KDPG aldolase, resulted in nonspecific ruptures that were indistinguishable from those of specific lactose–G3 interactions. These results demonstrate that careful experimental design is vital to the production of interpretable data, and suggest that contact force minimization is an effective technique for probing the unbinding forces and rupture lengths of only specific ligand–receptor interactions.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23537272</pmid><doi>10.1021/jp309393s</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2013-05, Vol.117 (17), p.4755-4762 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753510144 |
source | MEDLINE; ACS Publications |
subjects | Affinity Aldehyde-Lyases - chemistry Aldehyde-Lyases - genetics Aldehyde-Lyases - metabolism Aldolase Animals Atomic force microscopy Biological and medical sciences Blocking Contact Contact force Fundamental and applied biological sciences. Psychology Galectin 3 - chemistry Galectin 3 - genetics Galectin 3 - metabolism Histidine - chemistry Histidine - genetics Histidine - metabolism Immobilized Proteins - chemistry Intermolecular phenomena Lactose - chemistry Mannose - chemistry Mice Microscopy, Atomic Force Molecular biophysics Oligopeptides - chemistry Oligopeptides - genetics Oligopeptides - metabolism Optimization Recombinant Fusion Proteins - biosynthesis Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - genetics Rupture Silicon - chemistry Silicon Compounds - chemistry |
title | Effect of Compressive Force on Unbinding Specific Protein–Ligand Complexes with Force Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Compressive%20Force%20on%20Unbinding%20Specific%20Protein%E2%80%93Ligand%20Complexes%20with%20Force%20Spectroscopy&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Bowers,%20Carleen%20M&rft.date=2013-05-02&rft.volume=117&rft.issue=17&rft.spage=4755&rft.epage=4762&rft.pages=4755-4762&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp309393s&rft_dat=%3Cproquest_cross%3E1753510144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1348497903&rft_id=info:pmid/23537272&rfr_iscdi=true |