Stabilizing model predictive control: On the enlargement of the terminal set

Summary It is well known that a large terminal set leads to a large region where the model predictive control problem is feasible without the need for a long prediction horizon. This paper proposes a new method for the enlargement of the terminal set. Different from existing approaches, the method u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2015-10, Vol.25 (15), p.2646-2670
Hauptverfasser: Brunner, Florian D., Lazar, Mircea, Allgöwer, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2670
container_issue 15
container_start_page 2646
container_title International journal of robust and nonlinear control
container_volume 25
creator Brunner, Florian D.
Lazar, Mircea
Allgöwer, Frank
description Summary It is well known that a large terminal set leads to a large region where the model predictive control problem is feasible without the need for a long prediction horizon. This paper proposes a new method for the enlargement of the terminal set. Different from existing approaches, the method uses the convex hull of trajectories as the basis for the construction. These trajectories may be any feasible trajectories of the system terminating in an invariant set that contains the origin and are not restricted to consist of equilibrium points only. The resulting terminal controller is the solution of an optimization problem depending on the state and is therefore in general a nonlinear function. Copyright © 2014 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/rnc.3219
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753509605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3800717161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4349-dbaebe9aa31b3867cf69d4ed17f6933d506c1a03dafe3b9c9d8788476b4a7da43</originalsourceid><addsrcrecordid>eNp10N9LwzAQB_AiCs4p-CcUfPGlM2napvFNpk5hbOD8hS8hTa4zM21nkqnzr7dzoij4dMfdh-P4BsE-Rj2MUHxka9kjMWYbQQcjxiIcE7a56hMW5Swm28GOczOE2l2cdILhxItCG_2u62lYNQpMOLegtPT6BULZ1N425jgc16F_hBBqI-wUKqh92JSfIw-20rUwoQO_G2yVwjjY-6rd4Ob87Lp_EQ3Hg8v-yTCSCWnfUIWAApgQBBckz6gsM6YSUJi2DSEqRZnEAhElSiAFk0zlNM8TmhWJoEokpBscru_ObfO8AOd5pZ0EY0QNzcJxTFOSIpahtKUHf-isWdj235XCCMc4ofTnoLSNcxZKPre6EnbJMeKrWHkbK1_F2tJoTV-1geW_jl-N-r-9dh7evr2wTzyjhKb8bjTglE4eTu8x5bfkAyc7h-k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1710121477</pqid></control><display><type>article</type><title>Stabilizing model predictive control: On the enlargement of the terminal set</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Brunner, Florian D. ; Lazar, Mircea ; Allgöwer, Frank</creator><creatorcontrib>Brunner, Florian D. ; Lazar, Mircea ; Allgöwer, Frank</creatorcontrib><description>Summary It is well known that a large terminal set leads to a large region where the model predictive control problem is feasible without the need for a long prediction horizon. This paper proposes a new method for the enlargement of the terminal set. Different from existing approaches, the method uses the convex hull of trajectories as the basis for the construction. These trajectories may be any feasible trajectories of the system terminating in an invariant set that contains the origin and are not restricted to consist of equilibrium points only. The resulting terminal controller is the solution of an optimization problem depending on the state and is therefore in general a nonlinear function. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.3219</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>constrained control ; Enlargement ; Hulls (structures) ; invariant sets ; Invariants ; Mathematical models ; model predictive control ; Nonlinearity ; Predictive control ; Stopping ; Terminals ; Trajectories</subject><ispartof>International journal of robust and nonlinear control, 2015-10, Vol.25 (15), p.2646-2670</ispartof><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4349-dbaebe9aa31b3867cf69d4ed17f6933d506c1a03dafe3b9c9d8788476b4a7da43</citedby><cites>FETCH-LOGICAL-c4349-dbaebe9aa31b3867cf69d4ed17f6933d506c1a03dafe3b9c9d8788476b4a7da43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.3219$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.3219$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Brunner, Florian D.</creatorcontrib><creatorcontrib>Lazar, Mircea</creatorcontrib><creatorcontrib>Allgöwer, Frank</creatorcontrib><title>Stabilizing model predictive control: On the enlargement of the terminal set</title><title>International journal of robust and nonlinear control</title><addtitle>Int. J. Robust. Nonlinear Control</addtitle><description>Summary It is well known that a large terminal set leads to a large region where the model predictive control problem is feasible without the need for a long prediction horizon. This paper proposes a new method for the enlargement of the terminal set. Different from existing approaches, the method uses the convex hull of trajectories as the basis for the construction. These trajectories may be any feasible trajectories of the system terminating in an invariant set that contains the origin and are not restricted to consist of equilibrium points only. The resulting terminal controller is the solution of an optimization problem depending on the state and is therefore in general a nonlinear function. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><subject>constrained control</subject><subject>Enlargement</subject><subject>Hulls (structures)</subject><subject>invariant sets</subject><subject>Invariants</subject><subject>Mathematical models</subject><subject>model predictive control</subject><subject>Nonlinearity</subject><subject>Predictive control</subject><subject>Stopping</subject><subject>Terminals</subject><subject>Trajectories</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp10N9LwzAQB_AiCs4p-CcUfPGlM2napvFNpk5hbOD8hS8hTa4zM21nkqnzr7dzoij4dMfdh-P4BsE-Rj2MUHxka9kjMWYbQQcjxiIcE7a56hMW5Swm28GOczOE2l2cdILhxItCG_2u62lYNQpMOLegtPT6BULZ1N425jgc16F_hBBqI-wUKqh92JSfIw-20rUwoQO_G2yVwjjY-6rd4Ob87Lp_EQ3Hg8v-yTCSCWnfUIWAApgQBBckz6gsM6YSUJi2DSEqRZnEAhElSiAFk0zlNM8TmhWJoEokpBscru_ObfO8AOd5pZ0EY0QNzcJxTFOSIpahtKUHf-isWdj235XCCMc4ofTnoLSNcxZKPre6EnbJMeKrWHkbK1_F2tJoTV-1geW_jl-N-r-9dh7evr2wTzyjhKb8bjTglE4eTu8x5bfkAyc7h-k</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Brunner, Florian D.</creator><creator>Lazar, Mircea</creator><creator>Allgöwer, Frank</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201510</creationdate><title>Stabilizing model predictive control: On the enlargement of the terminal set</title><author>Brunner, Florian D. ; Lazar, Mircea ; Allgöwer, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4349-dbaebe9aa31b3867cf69d4ed17f6933d506c1a03dafe3b9c9d8788476b4a7da43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>constrained control</topic><topic>Enlargement</topic><topic>Hulls (structures)</topic><topic>invariant sets</topic><topic>Invariants</topic><topic>Mathematical models</topic><topic>model predictive control</topic><topic>Nonlinearity</topic><topic>Predictive control</topic><topic>Stopping</topic><topic>Terminals</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brunner, Florian D.</creatorcontrib><creatorcontrib>Lazar, Mircea</creatorcontrib><creatorcontrib>Allgöwer, Frank</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brunner, Florian D.</au><au>Lazar, Mircea</au><au>Allgöwer, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilizing model predictive control: On the enlargement of the terminal set</atitle><jtitle>International journal of robust and nonlinear control</jtitle><addtitle>Int. J. Robust. Nonlinear Control</addtitle><date>2015-10</date><risdate>2015</risdate><volume>25</volume><issue>15</issue><spage>2646</spage><epage>2670</epage><pages>2646-2670</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary It is well known that a large terminal set leads to a large region where the model predictive control problem is feasible without the need for a long prediction horizon. This paper proposes a new method for the enlargement of the terminal set. Different from existing approaches, the method uses the convex hull of trajectories as the basis for the construction. These trajectories may be any feasible trajectories of the system terminating in an invariant set that contains the origin and are not restricted to consist of equilibrium points only. The resulting terminal controller is the solution of an optimization problem depending on the state and is therefore in general a nonlinear function. Copyright © 2014 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/rnc.3219</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2015-10, Vol.25 (15), p.2646-2670
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_miscellaneous_1753509605
source Wiley Online Library Journals Frontfile Complete
subjects constrained control
Enlargement
Hulls (structures)
invariant sets
Invariants
Mathematical models
model predictive control
Nonlinearity
Predictive control
Stopping
Terminals
Trajectories
title Stabilizing model predictive control: On the enlargement of the terminal set
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A18%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilizing%20model%20predictive%20control:%20On%20the%20enlargement%20of%20the%20terminal%20set&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Brunner,%20Florian%20D.&rft.date=2015-10&rft.volume=25&rft.issue=15&rft.spage=2646&rft.epage=2670&rft.pages=2646-2670&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.3219&rft_dat=%3Cproquest_cross%3E3800717161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1710121477&rft_id=info:pmid/&rfr_iscdi=true