Quantum chemistry calculation and experimental study of CO2/CH4 and functional group interactions for the design of solubility selective membrane materials

The separation of CO2 from CH4 in the natural gas sweetening process would benefit from a membrane material which has a high solubility selectivity between these two molecules. In this study, quantum chemistry calculations were used to screen a set of twelve representative functional groups by compa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of membrane science 2013-08, Vol.441, p.137-147
Hauptverfasser: Yu, Decai, Matteucci, Scott, Stangland, Eric, Calverley, Edward, Wegener, Heidi, Anaya, Denise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue
container_start_page 137
container_title Journal of membrane science
container_volume 441
creator Yu, Decai
Matteucci, Scott
Stangland, Eric
Calverley, Edward
Wegener, Heidi
Anaya, Denise
description The separation of CO2 from CH4 in the natural gas sweetening process would benefit from a membrane material which has a high solubility selectivity between these two molecules. In this study, quantum chemistry calculations were used to screen a set of twelve representative functional groups by comparing their CO2 and CH4 binding energies, as well as the binding energy differences. The calculation results indicate that non-base groups, such as acids and their salts, may help improve the solubility selectivity of polymeric membrane materials for CO2 over CH4. Experimental measurements of CO2 solubility in polyacrylic acid (PAA) confirmed that acid groups can help absorb CO2 and enhance the selectivity over CH4. However, the selectivity increase due to the acid functional group is not exceptional. Further quantum chemistry study of functional group interactions reveals that strongly polar functional groups can have self-interactions and form “dimers” in the polymer. The formation of functional group dimers may decrease the solubility of CO2 because of their weaker interactions with CO2 than isolated functional groups. In addition, our calculations show that water can interact more favorably with polar functional groups than CO2. Therefore the presence of water may decrease CO2 solubility. •Twelve representative functional groups have been screened by quantum chemistry calculations for functional polymer design.•Acid groups and their salt forms may help increase the solubility selectivity of CO2 over CH4.•Experimental measurement shows an acid functional group can help absorb CO2 in polymer.
doi_str_mv 10.1016/j.memsci.2013.03.052
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753504768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037673881300255X</els_id><sourcerecordid>1513479361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-f796fa229ee931f456ca14014ee34826d6d6dae4572d370490a3d5f7fb3e73a33</originalsourceid><addsrcrecordid>eNqFkc-KFDEQxhtRcFx9A8FcBC89m3-ddF8EGdQVFhbRPYdMujKbobszJull51l8Wau3F49KChKS31dV-aqq3jK6ZZSpy-N2hDG7sOWUiS3FaPizasNaLWrBuHhebajQqtaibV9Wr3I-Uso0bbtN9fv7bKcyj8TdwRhySWfi7ODmwZYQJ2KnnsDDCVIYYSp2ILnM_ZlET3Y3_HJ3JR8JP09uwfH9kOJ8ImEqkOzjXSY-JlLugPSQw2FatDkO8z4MoZxJhgGQuweCX9gnO-HBojjYIb-uXnjc4M3TflHdfvn8c3dVX998_bb7dF07yVWpve6Ut5x3AJ1gXjbKWSYpkwBCtlz1y7IgG817oansqBV947XfC9DCCnFRfVjznlL8NUMuBp1wMAzYTZyzYboRDZVatf9HGyak7oRiiMoVdSnmnMCbE7po09kwapaxmaNZx2aWsRmK0XCUvX-qYDNOwqMlLuS_Wq6l7GS3pH-3ct5GYw8JmdsfmEhRSlvZKYXEx5UA9O4-QDJYCyYHfUjouelj-HcrfwAnYbuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513479361</pqid></control><display><type>article</type><title>Quantum chemistry calculation and experimental study of CO2/CH4 and functional group interactions for the design of solubility selective membrane materials</title><source>Elsevier ScienceDirect Journals</source><creator>Yu, Decai ; Matteucci, Scott ; Stangland, Eric ; Calverley, Edward ; Wegener, Heidi ; Anaya, Denise</creator><creatorcontrib>Yu, Decai ; Matteucci, Scott ; Stangland, Eric ; Calverley, Edward ; Wegener, Heidi ; Anaya, Denise</creatorcontrib><description>The separation of CO2 from CH4 in the natural gas sweetening process would benefit from a membrane material which has a high solubility selectivity between these two molecules. In this study, quantum chemistry calculations were used to screen a set of twelve representative functional groups by comparing their CO2 and CH4 binding energies, as well as the binding energy differences. The calculation results indicate that non-base groups, such as acids and their salts, may help improve the solubility selectivity of polymeric membrane materials for CO2 over CH4. Experimental measurements of CO2 solubility in polyacrylic acid (PAA) confirmed that acid groups can help absorb CO2 and enhance the selectivity over CH4. However, the selectivity increase due to the acid functional group is not exceptional. Further quantum chemistry study of functional group interactions reveals that strongly polar functional groups can have self-interactions and form “dimers” in the polymer. The formation of functional group dimers may decrease the solubility of CO2 because of their weaker interactions with CO2 than isolated functional groups. In addition, our calculations show that water can interact more favorably with polar functional groups than CO2. Therefore the presence of water may decrease CO2 solubility. •Twelve representative functional groups have been screened by quantum chemistry calculations for functional polymer design.•Acid groups and their salt forms may help increase the solubility selectivity of CO2 over CH4.•Experimental measurement shows an acid functional group can help absorb CO2 in polymer.</description><identifier>ISSN: 0376-7388</identifier><identifier>EISSN: 1873-3123</identifier><identifier>DOI: 10.1016/j.memsci.2013.03.052</identifier><identifier>CODEN: JMESDO</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>acids ; Applied sciences ; artificial membranes ; Binding Energy ; Carbon dioxide ; energy ; Exact sciences and technology ; Exchange resins and membranes ; Forms of application and semi-finished materials ; Functional groups ; Functional polymer membrane materials ; Materials selection ; Mathematical analysis ; Membranes ; Methane ; natural gas ; polyacrylic acid ; Polymer industry, paints, wood ; Quantum chemistry ; salts ; Selectivity ; Solubility ; Solubility selectivity ; Technology of polymers</subject><ispartof>Journal of membrane science, 2013-08, Vol.441, p.137-147</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-f796fa229ee931f456ca14014ee34826d6d6dae4572d370490a3d5f7fb3e73a33</citedby><cites>FETCH-LOGICAL-c426t-f796fa229ee931f456ca14014ee34826d6d6dae4572d370490a3d5f7fb3e73a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S037673881300255X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27449491$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Decai</creatorcontrib><creatorcontrib>Matteucci, Scott</creatorcontrib><creatorcontrib>Stangland, Eric</creatorcontrib><creatorcontrib>Calverley, Edward</creatorcontrib><creatorcontrib>Wegener, Heidi</creatorcontrib><creatorcontrib>Anaya, Denise</creatorcontrib><title>Quantum chemistry calculation and experimental study of CO2/CH4 and functional group interactions for the design of solubility selective membrane materials</title><title>Journal of membrane science</title><description>The separation of CO2 from CH4 in the natural gas sweetening process would benefit from a membrane material which has a high solubility selectivity between these two molecules. In this study, quantum chemistry calculations were used to screen a set of twelve representative functional groups by comparing their CO2 and CH4 binding energies, as well as the binding energy differences. The calculation results indicate that non-base groups, such as acids and their salts, may help improve the solubility selectivity of polymeric membrane materials for CO2 over CH4. Experimental measurements of CO2 solubility in polyacrylic acid (PAA) confirmed that acid groups can help absorb CO2 and enhance the selectivity over CH4. However, the selectivity increase due to the acid functional group is not exceptional. Further quantum chemistry study of functional group interactions reveals that strongly polar functional groups can have self-interactions and form “dimers” in the polymer. The formation of functional group dimers may decrease the solubility of CO2 because of their weaker interactions with CO2 than isolated functional groups. In addition, our calculations show that water can interact more favorably with polar functional groups than CO2. Therefore the presence of water may decrease CO2 solubility. •Twelve representative functional groups have been screened by quantum chemistry calculations for functional polymer design.•Acid groups and their salt forms may help increase the solubility selectivity of CO2 over CH4.•Experimental measurement shows an acid functional group can help absorb CO2 in polymer.</description><subject>acids</subject><subject>Applied sciences</subject><subject>artificial membranes</subject><subject>Binding Energy</subject><subject>Carbon dioxide</subject><subject>energy</subject><subject>Exact sciences and technology</subject><subject>Exchange resins and membranes</subject><subject>Forms of application and semi-finished materials</subject><subject>Functional groups</subject><subject>Functional polymer membrane materials</subject><subject>Materials selection</subject><subject>Mathematical analysis</subject><subject>Membranes</subject><subject>Methane</subject><subject>natural gas</subject><subject>polyacrylic acid</subject><subject>Polymer industry, paints, wood</subject><subject>Quantum chemistry</subject><subject>salts</subject><subject>Selectivity</subject><subject>Solubility</subject><subject>Solubility selectivity</subject><subject>Technology of polymers</subject><issn>0376-7388</issn><issn>1873-3123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkc-KFDEQxhtRcFx9A8FcBC89m3-ddF8EGdQVFhbRPYdMujKbobszJull51l8Wau3F49KChKS31dV-aqq3jK6ZZSpy-N2hDG7sOWUiS3FaPizasNaLWrBuHhebajQqtaibV9Wr3I-Uso0bbtN9fv7bKcyj8TdwRhySWfi7ODmwZYQJ2KnnsDDCVIYYSp2ILnM_ZlET3Y3_HJ3JR8JP09uwfH9kOJ8ImEqkOzjXSY-JlLugPSQw2FatDkO8z4MoZxJhgGQuweCX9gnO-HBojjYIb-uXnjc4M3TflHdfvn8c3dVX998_bb7dF07yVWpve6Ut5x3AJ1gXjbKWSYpkwBCtlz1y7IgG817oansqBV947XfC9DCCnFRfVjznlL8NUMuBp1wMAzYTZyzYboRDZVatf9HGyak7oRiiMoVdSnmnMCbE7po09kwapaxmaNZx2aWsRmK0XCUvX-qYDNOwqMlLuS_Wq6l7GS3pH-3ct5GYw8JmdsfmEhRSlvZKYXEx5UA9O4-QDJYCyYHfUjouelj-HcrfwAnYbuw</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Yu, Decai</creator><creator>Matteucci, Scott</creator><creator>Stangland, Eric</creator><creator>Calverley, Edward</creator><creator>Wegener, Heidi</creator><creator>Anaya, Denise</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130801</creationdate><title>Quantum chemistry calculation and experimental study of CO2/CH4 and functional group interactions for the design of solubility selective membrane materials</title><author>Yu, Decai ; Matteucci, Scott ; Stangland, Eric ; Calverley, Edward ; Wegener, Heidi ; Anaya, Denise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-f796fa229ee931f456ca14014ee34826d6d6dae4572d370490a3d5f7fb3e73a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>acids</topic><topic>Applied sciences</topic><topic>artificial membranes</topic><topic>Binding Energy</topic><topic>Carbon dioxide</topic><topic>energy</topic><topic>Exact sciences and technology</topic><topic>Exchange resins and membranes</topic><topic>Forms of application and semi-finished materials</topic><topic>Functional groups</topic><topic>Functional polymer membrane materials</topic><topic>Materials selection</topic><topic>Mathematical analysis</topic><topic>Membranes</topic><topic>Methane</topic><topic>natural gas</topic><topic>polyacrylic acid</topic><topic>Polymer industry, paints, wood</topic><topic>Quantum chemistry</topic><topic>salts</topic><topic>Selectivity</topic><topic>Solubility</topic><topic>Solubility selectivity</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Decai</creatorcontrib><creatorcontrib>Matteucci, Scott</creatorcontrib><creatorcontrib>Stangland, Eric</creatorcontrib><creatorcontrib>Calverley, Edward</creatorcontrib><creatorcontrib>Wegener, Heidi</creatorcontrib><creatorcontrib>Anaya, Denise</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of membrane science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Decai</au><au>Matteucci, Scott</au><au>Stangland, Eric</au><au>Calverley, Edward</au><au>Wegener, Heidi</au><au>Anaya, Denise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum chemistry calculation and experimental study of CO2/CH4 and functional group interactions for the design of solubility selective membrane materials</atitle><jtitle>Journal of membrane science</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>441</volume><spage>137</spage><epage>147</epage><pages>137-147</pages><issn>0376-7388</issn><eissn>1873-3123</eissn><coden>JMESDO</coden><abstract>The separation of CO2 from CH4 in the natural gas sweetening process would benefit from a membrane material which has a high solubility selectivity between these two molecules. In this study, quantum chemistry calculations were used to screen a set of twelve representative functional groups by comparing their CO2 and CH4 binding energies, as well as the binding energy differences. The calculation results indicate that non-base groups, such as acids and their salts, may help improve the solubility selectivity of polymeric membrane materials for CO2 over CH4. Experimental measurements of CO2 solubility in polyacrylic acid (PAA) confirmed that acid groups can help absorb CO2 and enhance the selectivity over CH4. However, the selectivity increase due to the acid functional group is not exceptional. Further quantum chemistry study of functional group interactions reveals that strongly polar functional groups can have self-interactions and form “dimers” in the polymer. The formation of functional group dimers may decrease the solubility of CO2 because of their weaker interactions with CO2 than isolated functional groups. In addition, our calculations show that water can interact more favorably with polar functional groups than CO2. Therefore the presence of water may decrease CO2 solubility. •Twelve representative functional groups have been screened by quantum chemistry calculations for functional polymer design.•Acid groups and their salt forms may help increase the solubility selectivity of CO2 over CH4.•Experimental measurement shows an acid functional group can help absorb CO2 in polymer.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.memsci.2013.03.052</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0376-7388
ispartof Journal of membrane science, 2013-08, Vol.441, p.137-147
issn 0376-7388
1873-3123
language eng
recordid cdi_proquest_miscellaneous_1753504768
source Elsevier ScienceDirect Journals
subjects acids
Applied sciences
artificial membranes
Binding Energy
Carbon dioxide
energy
Exact sciences and technology
Exchange resins and membranes
Forms of application and semi-finished materials
Functional groups
Functional polymer membrane materials
Materials selection
Mathematical analysis
Membranes
Methane
natural gas
polyacrylic acid
Polymer industry, paints, wood
Quantum chemistry
salts
Selectivity
Solubility
Solubility selectivity
Technology of polymers
title Quantum chemistry calculation and experimental study of CO2/CH4 and functional group interactions for the design of solubility selective membrane materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A45%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20chemistry%20calculation%20and%20experimental%20study%20of%20CO2/CH4%20and%20functional%20group%20interactions%20for%20the%20design%20of%20solubility%20selective%20membrane%20materials&rft.jtitle=Journal%20of%20membrane%20science&rft.au=Yu,%20Decai&rft.date=2013-08-01&rft.volume=441&rft.spage=137&rft.epage=147&rft.pages=137-147&rft.issn=0376-7388&rft.eissn=1873-3123&rft.coden=JMESDO&rft_id=info:doi/10.1016/j.memsci.2013.03.052&rft_dat=%3Cproquest_cross%3E1513479361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513479361&rft_id=info:pmid/&rft_els_id=S037673881300255X&rfr_iscdi=true