Quantum chemistry calculation and experimental study of CO2/CH4 and functional group interactions for the design of solubility selective membrane materials
The separation of CO2 from CH4 in the natural gas sweetening process would benefit from a membrane material which has a high solubility selectivity between these two molecules. In this study, quantum chemistry calculations were used to screen a set of twelve representative functional groups by compa...
Gespeichert in:
Veröffentlicht in: | Journal of membrane science 2013-08, Vol.441, p.137-147 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | |
container_start_page | 137 |
container_title | Journal of membrane science |
container_volume | 441 |
creator | Yu, Decai Matteucci, Scott Stangland, Eric Calverley, Edward Wegener, Heidi Anaya, Denise |
description | The separation of CO2 from CH4 in the natural gas sweetening process would benefit from a membrane material which has a high solubility selectivity between these two molecules. In this study, quantum chemistry calculations were used to screen a set of twelve representative functional groups by comparing their CO2 and CH4 binding energies, as well as the binding energy differences. The calculation results indicate that non-base groups, such as acids and their salts, may help improve the solubility selectivity of polymeric membrane materials for CO2 over CH4. Experimental measurements of CO2 solubility in polyacrylic acid (PAA) confirmed that acid groups can help absorb CO2 and enhance the selectivity over CH4. However, the selectivity increase due to the acid functional group is not exceptional. Further quantum chemistry study of functional group interactions reveals that strongly polar functional groups can have self-interactions and form “dimers” in the polymer. The formation of functional group dimers may decrease the solubility of CO2 because of their weaker interactions with CO2 than isolated functional groups. In addition, our calculations show that water can interact more favorably with polar functional groups than CO2. Therefore the presence of water may decrease CO2 solubility.
•Twelve representative functional groups have been screened by quantum chemistry calculations for functional polymer design.•Acid groups and their salt forms may help increase the solubility selectivity of CO2 over CH4.•Experimental measurement shows an acid functional group can help absorb CO2 in polymer. |
doi_str_mv | 10.1016/j.memsci.2013.03.052 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753504768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037673881300255X</els_id><sourcerecordid>1513479361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-f796fa229ee931f456ca14014ee34826d6d6dae4572d370490a3d5f7fb3e73a33</originalsourceid><addsrcrecordid>eNqFkc-KFDEQxhtRcFx9A8FcBC89m3-ddF8EGdQVFhbRPYdMujKbobszJull51l8Wau3F49KChKS31dV-aqq3jK6ZZSpy-N2hDG7sOWUiS3FaPizasNaLWrBuHhebajQqtaibV9Wr3I-Uso0bbtN9fv7bKcyj8TdwRhySWfi7ODmwZYQJ2KnnsDDCVIYYSp2ILnM_ZlET3Y3_HJ3JR8JP09uwfH9kOJ8ImEqkOzjXSY-JlLugPSQw2FatDkO8z4MoZxJhgGQuweCX9gnO-HBojjYIb-uXnjc4M3TflHdfvn8c3dVX998_bb7dF07yVWpve6Ut5x3AJ1gXjbKWSYpkwBCtlz1y7IgG817oansqBV947XfC9DCCnFRfVjznlL8NUMuBp1wMAzYTZyzYboRDZVatf9HGyak7oRiiMoVdSnmnMCbE7po09kwapaxmaNZx2aWsRmK0XCUvX-qYDNOwqMlLuS_Wq6l7GS3pH-3ct5GYw8JmdsfmEhRSlvZKYXEx5UA9O4-QDJYCyYHfUjouelj-HcrfwAnYbuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513479361</pqid></control><display><type>article</type><title>Quantum chemistry calculation and experimental study of CO2/CH4 and functional group interactions for the design of solubility selective membrane materials</title><source>Elsevier ScienceDirect Journals</source><creator>Yu, Decai ; Matteucci, Scott ; Stangland, Eric ; Calverley, Edward ; Wegener, Heidi ; Anaya, Denise</creator><creatorcontrib>Yu, Decai ; Matteucci, Scott ; Stangland, Eric ; Calverley, Edward ; Wegener, Heidi ; Anaya, Denise</creatorcontrib><description>The separation of CO2 from CH4 in the natural gas sweetening process would benefit from a membrane material which has a high solubility selectivity between these two molecules. In this study, quantum chemistry calculations were used to screen a set of twelve representative functional groups by comparing their CO2 and CH4 binding energies, as well as the binding energy differences. The calculation results indicate that non-base groups, such as acids and their salts, may help improve the solubility selectivity of polymeric membrane materials for CO2 over CH4. Experimental measurements of CO2 solubility in polyacrylic acid (PAA) confirmed that acid groups can help absorb CO2 and enhance the selectivity over CH4. However, the selectivity increase due to the acid functional group is not exceptional. Further quantum chemistry study of functional group interactions reveals that strongly polar functional groups can have self-interactions and form “dimers” in the polymer. The formation of functional group dimers may decrease the solubility of CO2 because of their weaker interactions with CO2 than isolated functional groups. In addition, our calculations show that water can interact more favorably with polar functional groups than CO2. Therefore the presence of water may decrease CO2 solubility.
•Twelve representative functional groups have been screened by quantum chemistry calculations for functional polymer design.•Acid groups and their salt forms may help increase the solubility selectivity of CO2 over CH4.•Experimental measurement shows an acid functional group can help absorb CO2 in polymer.</description><identifier>ISSN: 0376-7388</identifier><identifier>EISSN: 1873-3123</identifier><identifier>DOI: 10.1016/j.memsci.2013.03.052</identifier><identifier>CODEN: JMESDO</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>acids ; Applied sciences ; artificial membranes ; Binding Energy ; Carbon dioxide ; energy ; Exact sciences and technology ; Exchange resins and membranes ; Forms of application and semi-finished materials ; Functional groups ; Functional polymer membrane materials ; Materials selection ; Mathematical analysis ; Membranes ; Methane ; natural gas ; polyacrylic acid ; Polymer industry, paints, wood ; Quantum chemistry ; salts ; Selectivity ; Solubility ; Solubility selectivity ; Technology of polymers</subject><ispartof>Journal of membrane science, 2013-08, Vol.441, p.137-147</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-f796fa229ee931f456ca14014ee34826d6d6dae4572d370490a3d5f7fb3e73a33</citedby><cites>FETCH-LOGICAL-c426t-f796fa229ee931f456ca14014ee34826d6d6dae4572d370490a3d5f7fb3e73a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S037673881300255X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27449491$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Decai</creatorcontrib><creatorcontrib>Matteucci, Scott</creatorcontrib><creatorcontrib>Stangland, Eric</creatorcontrib><creatorcontrib>Calverley, Edward</creatorcontrib><creatorcontrib>Wegener, Heidi</creatorcontrib><creatorcontrib>Anaya, Denise</creatorcontrib><title>Quantum chemistry calculation and experimental study of CO2/CH4 and functional group interactions for the design of solubility selective membrane materials</title><title>Journal of membrane science</title><description>The separation of CO2 from CH4 in the natural gas sweetening process would benefit from a membrane material which has a high solubility selectivity between these two molecules. In this study, quantum chemistry calculations were used to screen a set of twelve representative functional groups by comparing their CO2 and CH4 binding energies, as well as the binding energy differences. The calculation results indicate that non-base groups, such as acids and their salts, may help improve the solubility selectivity of polymeric membrane materials for CO2 over CH4. Experimental measurements of CO2 solubility in polyacrylic acid (PAA) confirmed that acid groups can help absorb CO2 and enhance the selectivity over CH4. However, the selectivity increase due to the acid functional group is not exceptional. Further quantum chemistry study of functional group interactions reveals that strongly polar functional groups can have self-interactions and form “dimers” in the polymer. The formation of functional group dimers may decrease the solubility of CO2 because of their weaker interactions with CO2 than isolated functional groups. In addition, our calculations show that water can interact more favorably with polar functional groups than CO2. Therefore the presence of water may decrease CO2 solubility.
•Twelve representative functional groups have been screened by quantum chemistry calculations for functional polymer design.•Acid groups and their salt forms may help increase the solubility selectivity of CO2 over CH4.•Experimental measurement shows an acid functional group can help absorb CO2 in polymer.</description><subject>acids</subject><subject>Applied sciences</subject><subject>artificial membranes</subject><subject>Binding Energy</subject><subject>Carbon dioxide</subject><subject>energy</subject><subject>Exact sciences and technology</subject><subject>Exchange resins and membranes</subject><subject>Forms of application and semi-finished materials</subject><subject>Functional groups</subject><subject>Functional polymer membrane materials</subject><subject>Materials selection</subject><subject>Mathematical analysis</subject><subject>Membranes</subject><subject>Methane</subject><subject>natural gas</subject><subject>polyacrylic acid</subject><subject>Polymer industry, paints, wood</subject><subject>Quantum chemistry</subject><subject>salts</subject><subject>Selectivity</subject><subject>Solubility</subject><subject>Solubility selectivity</subject><subject>Technology of polymers</subject><issn>0376-7388</issn><issn>1873-3123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkc-KFDEQxhtRcFx9A8FcBC89m3-ddF8EGdQVFhbRPYdMujKbobszJull51l8Wau3F49KChKS31dV-aqq3jK6ZZSpy-N2hDG7sOWUiS3FaPizasNaLWrBuHhebajQqtaibV9Wr3I-Uso0bbtN9fv7bKcyj8TdwRhySWfi7ODmwZYQJ2KnnsDDCVIYYSp2ILnM_ZlET3Y3_HJ3JR8JP09uwfH9kOJ8ImEqkOzjXSY-JlLugPSQw2FatDkO8z4MoZxJhgGQuweCX9gnO-HBojjYIb-uXnjc4M3TflHdfvn8c3dVX998_bb7dF07yVWpve6Ut5x3AJ1gXjbKWSYpkwBCtlz1y7IgG817oansqBV947XfC9DCCnFRfVjznlL8NUMuBp1wMAzYTZyzYboRDZVatf9HGyak7oRiiMoVdSnmnMCbE7po09kwapaxmaNZx2aWsRmK0XCUvX-qYDNOwqMlLuS_Wq6l7GS3pH-3ct5GYw8JmdsfmEhRSlvZKYXEx5UA9O4-QDJYCyYHfUjouelj-HcrfwAnYbuw</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Yu, Decai</creator><creator>Matteucci, Scott</creator><creator>Stangland, Eric</creator><creator>Calverley, Edward</creator><creator>Wegener, Heidi</creator><creator>Anaya, Denise</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130801</creationdate><title>Quantum chemistry calculation and experimental study of CO2/CH4 and functional group interactions for the design of solubility selective membrane materials</title><author>Yu, Decai ; Matteucci, Scott ; Stangland, Eric ; Calverley, Edward ; Wegener, Heidi ; Anaya, Denise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-f796fa229ee931f456ca14014ee34826d6d6dae4572d370490a3d5f7fb3e73a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>acids</topic><topic>Applied sciences</topic><topic>artificial membranes</topic><topic>Binding Energy</topic><topic>Carbon dioxide</topic><topic>energy</topic><topic>Exact sciences and technology</topic><topic>Exchange resins and membranes</topic><topic>Forms of application and semi-finished materials</topic><topic>Functional groups</topic><topic>Functional polymer membrane materials</topic><topic>Materials selection</topic><topic>Mathematical analysis</topic><topic>Membranes</topic><topic>Methane</topic><topic>natural gas</topic><topic>polyacrylic acid</topic><topic>Polymer industry, paints, wood</topic><topic>Quantum chemistry</topic><topic>salts</topic><topic>Selectivity</topic><topic>Solubility</topic><topic>Solubility selectivity</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Decai</creatorcontrib><creatorcontrib>Matteucci, Scott</creatorcontrib><creatorcontrib>Stangland, Eric</creatorcontrib><creatorcontrib>Calverley, Edward</creatorcontrib><creatorcontrib>Wegener, Heidi</creatorcontrib><creatorcontrib>Anaya, Denise</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of membrane science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Decai</au><au>Matteucci, Scott</au><au>Stangland, Eric</au><au>Calverley, Edward</au><au>Wegener, Heidi</au><au>Anaya, Denise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum chemistry calculation and experimental study of CO2/CH4 and functional group interactions for the design of solubility selective membrane materials</atitle><jtitle>Journal of membrane science</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>441</volume><spage>137</spage><epage>147</epage><pages>137-147</pages><issn>0376-7388</issn><eissn>1873-3123</eissn><coden>JMESDO</coden><abstract>The separation of CO2 from CH4 in the natural gas sweetening process would benefit from a membrane material which has a high solubility selectivity between these two molecules. In this study, quantum chemistry calculations were used to screen a set of twelve representative functional groups by comparing their CO2 and CH4 binding energies, as well as the binding energy differences. The calculation results indicate that non-base groups, such as acids and their salts, may help improve the solubility selectivity of polymeric membrane materials for CO2 over CH4. Experimental measurements of CO2 solubility in polyacrylic acid (PAA) confirmed that acid groups can help absorb CO2 and enhance the selectivity over CH4. However, the selectivity increase due to the acid functional group is not exceptional. Further quantum chemistry study of functional group interactions reveals that strongly polar functional groups can have self-interactions and form “dimers” in the polymer. The formation of functional group dimers may decrease the solubility of CO2 because of their weaker interactions with CO2 than isolated functional groups. In addition, our calculations show that water can interact more favorably with polar functional groups than CO2. Therefore the presence of water may decrease CO2 solubility.
•Twelve representative functional groups have been screened by quantum chemistry calculations for functional polymer design.•Acid groups and their salt forms may help increase the solubility selectivity of CO2 over CH4.•Experimental measurement shows an acid functional group can help absorb CO2 in polymer.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.memsci.2013.03.052</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0376-7388 |
ispartof | Journal of membrane science, 2013-08, Vol.441, p.137-147 |
issn | 0376-7388 1873-3123 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753504768 |
source | Elsevier ScienceDirect Journals |
subjects | acids Applied sciences artificial membranes Binding Energy Carbon dioxide energy Exact sciences and technology Exchange resins and membranes Forms of application and semi-finished materials Functional groups Functional polymer membrane materials Materials selection Mathematical analysis Membranes Methane natural gas polyacrylic acid Polymer industry, paints, wood Quantum chemistry salts Selectivity Solubility Solubility selectivity Technology of polymers |
title | Quantum chemistry calculation and experimental study of CO2/CH4 and functional group interactions for the design of solubility selective membrane materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A45%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20chemistry%20calculation%20and%20experimental%20study%20of%20CO2/CH4%20and%20functional%20group%20interactions%20for%20the%20design%20of%20solubility%20selective%20membrane%20materials&rft.jtitle=Journal%20of%20membrane%20science&rft.au=Yu,%20Decai&rft.date=2013-08-01&rft.volume=441&rft.spage=137&rft.epage=147&rft.pages=137-147&rft.issn=0376-7388&rft.eissn=1873-3123&rft.coden=JMESDO&rft_id=info:doi/10.1016/j.memsci.2013.03.052&rft_dat=%3Cproquest_cross%3E1513479361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513479361&rft_id=info:pmid/&rft_els_id=S037673881300255X&rfr_iscdi=true |