Influence of polymer interdiffusion and clay concentration on gas barrier of polyelectrolyte/clay nanobrick wall quadlayer assemblies

Thin film assemblies of polyvinylamine (PVAm), branched polyethylenimine (PEI), poly(acrylic acid) (PAA) and sodium montmorillonite (MMT) clay, created using the layer-by-layer assembly technique, demonstrate the influence of polymer interdiffusion and clay concentration on oxygen barrier behavior....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of membrane science 2014-02, Vol.452, p.46-53
Hauptverfasser: Tzeng, Ping, Maupin, Cale R., Grunlan, Jaime C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue
container_start_page 46
container_title Journal of membrane science
container_volume 452
creator Tzeng, Ping
Maupin, Cale R.
Grunlan, Jaime C.
description Thin film assemblies of polyvinylamine (PVAm), branched polyethylenimine (PEI), poly(acrylic acid) (PAA) and sodium montmorillonite (MMT) clay, created using the layer-by-layer assembly technique, demonstrate the influence of polymer interdiffusion and clay concentration on oxygen barrier behavior. These quadlayer (QL) assemblies can be switched from linear to exponential growth by varying the placement of PVAm and PEI layers. PEI has a much lower Tg and is better able to interdiffuse with PAA, resulting in exponential growth and greater clay deposition in each layer. When deposited on 179μm poly(ethylene terephthalate) (PET), these ‘nanobrick wall’ thin films only decreased visible light transmission by 2% as the thickness increased by a factor of 10, indicating that clay platelets are highly oriented and well separated. Atomic force and transmission electron microscope images also reveal this high level of clay orientation that creates an extended gas diffusion pathway that dramatically reduces oxygen transmission rate (OTR). A 6QL PVAm-based assembly, with a thickness of 175nm, has an OTR of 0.009cm3/(m2dayatm). OTR was found to be linked to both the degree of polymer interaction and clay concentration in these thin films. The desired barrier can be obtained by substituting PVAm layers for PEI. This study demonstrates a promising technique for tailoring the gas barrier of polymer/clay composite thin films that could find use in flexible electronics and food packaging. [Display omitted] •We create polymer nanocomposite thin films from polyelectrolytes and clay platelets.•Oxygen permeability of our films exceeds common films used in research and industries.•Gas permeability can be controlled by interdiffusion of the polyelectrolytes.•This technique can be exploited for gas separation/purification purposes.
doi_str_mv 10.1016/j.memsci.2013.10.039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753503753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0376738813008430</els_id><sourcerecordid>1753503753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-7cfdcd5444f3dc38c59bbadcecf8720dd368d3f2e3fcf777022e884a4a2c382c3</originalsourceid><addsrcrecordid>eNqFkc1q3DAUhUVpoNOkb9CFNoVuPNGPbWk2hRKaNhDIpl0LWboqmsryRLJb5gHy3rnuDF02ICFx-I6uOIeQ95xtOeP99X47wlhd3ArGJUpbJnevyIZrJRvJhXxNNkyqvlFS6zfkba17xrhierchT3c5pAWyAzoFepjScYRCY56h-BjCUuOUqc2eumSP1E0I5rnYeZVx_bSVDraUiKazHxK4ueBlhuu_pmzzNJToftE_NiX6uFiPMhpsrTAOKUK9IhfBpgrvzucl-XH75fvNt-b-4evdzef7xrVyNzfKBe9817ZtkN5J7brdMFjvwAWtBPNe9trLIEAGF5RSTAjQurWtFUjjviQfT-8eyvS4QJ3NGKuDlGyGaamGq052GFUnX0Y7gX_qu75DtD2hrky1FgjmUOJoy9FwZtaCzN6cCjJrQauKBaHtw3mCrc6mUGx2sf7zCi1xRN8j9-nEASbzG5M2-NLamI8FozZ-iv8f9Awf3Kyb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524396565</pqid></control><display><type>article</type><title>Influence of polymer interdiffusion and clay concentration on gas barrier of polyelectrolyte/clay nanobrick wall quadlayer assemblies</title><source>Elsevier ScienceDirect Journals</source><creator>Tzeng, Ping ; Maupin, Cale R. ; Grunlan, Jaime C.</creator><creatorcontrib>Tzeng, Ping ; Maupin, Cale R. ; Grunlan, Jaime C.</creatorcontrib><description>Thin film assemblies of polyvinylamine (PVAm), branched polyethylenimine (PEI), poly(acrylic acid) (PAA) and sodium montmorillonite (MMT) clay, created using the layer-by-layer assembly technique, demonstrate the influence of polymer interdiffusion and clay concentration on oxygen barrier behavior. These quadlayer (QL) assemblies can be switched from linear to exponential growth by varying the placement of PVAm and PEI layers. PEI has a much lower Tg and is better able to interdiffuse with PAA, resulting in exponential growth and greater clay deposition in each layer. When deposited on 179μm poly(ethylene terephthalate) (PET), these ‘nanobrick wall’ thin films only decreased visible light transmission by 2% as the thickness increased by a factor of 10, indicating that clay platelets are highly oriented and well separated. Atomic force and transmission electron microscope images also reveal this high level of clay orientation that creates an extended gas diffusion pathway that dramatically reduces oxygen transmission rate (OTR). A 6QL PVAm-based assembly, with a thickness of 175nm, has an OTR of 0.009cm3/(m2dayatm). OTR was found to be linked to both the degree of polymer interaction and clay concentration in these thin films. The desired barrier can be obtained by substituting PVAm layers for PEI. This study demonstrates a promising technique for tailoring the gas barrier of polymer/clay composite thin films that could find use in flexible electronics and food packaging. [Display omitted] •We create polymer nanocomposite thin films from polyelectrolytes and clay platelets.•Oxygen permeability of our films exceeds common films used in research and industries.•Gas permeability can be controlled by interdiffusion of the polyelectrolytes.•This technique can be exploited for gas separation/purification purposes.</description><identifier>ISSN: 0376-7388</identifier><identifier>EISSN: 1873-3123</identifier><identifier>DOI: 10.1016/j.memsci.2013.10.039</identifier><identifier>CODEN: JMESDO</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Assemblies ; Barriers ; Chemistry ; Clay (material) ; Colloidal state and disperse state ; Deposition ; Exact sciences and technology ; Gas barrier ; General and physical chemistry ; Ionization ; Layer-by-layer assembly ; Membranes ; Nanobrick wall ; Nanostructure ; Polyetherimides ; PVAm ; Thin films ; Walls</subject><ispartof>Journal of membrane science, 2014-02, Vol.452, p.46-53</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-7cfdcd5444f3dc38c59bbadcecf8720dd368d3f2e3fcf777022e884a4a2c382c3</citedby><cites>FETCH-LOGICAL-c439t-7cfdcd5444f3dc38c59bbadcecf8720dd368d3f2e3fcf777022e884a4a2c382c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.memsci.2013.10.039$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28352466$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tzeng, Ping</creatorcontrib><creatorcontrib>Maupin, Cale R.</creatorcontrib><creatorcontrib>Grunlan, Jaime C.</creatorcontrib><title>Influence of polymer interdiffusion and clay concentration on gas barrier of polyelectrolyte/clay nanobrick wall quadlayer assemblies</title><title>Journal of membrane science</title><description>Thin film assemblies of polyvinylamine (PVAm), branched polyethylenimine (PEI), poly(acrylic acid) (PAA) and sodium montmorillonite (MMT) clay, created using the layer-by-layer assembly technique, demonstrate the influence of polymer interdiffusion and clay concentration on oxygen barrier behavior. These quadlayer (QL) assemblies can be switched from linear to exponential growth by varying the placement of PVAm and PEI layers. PEI has a much lower Tg and is better able to interdiffuse with PAA, resulting in exponential growth and greater clay deposition in each layer. When deposited on 179μm poly(ethylene terephthalate) (PET), these ‘nanobrick wall’ thin films only decreased visible light transmission by 2% as the thickness increased by a factor of 10, indicating that clay platelets are highly oriented and well separated. Atomic force and transmission electron microscope images also reveal this high level of clay orientation that creates an extended gas diffusion pathway that dramatically reduces oxygen transmission rate (OTR). A 6QL PVAm-based assembly, with a thickness of 175nm, has an OTR of 0.009cm3/(m2dayatm). OTR was found to be linked to both the degree of polymer interaction and clay concentration in these thin films. The desired barrier can be obtained by substituting PVAm layers for PEI. This study demonstrates a promising technique for tailoring the gas barrier of polymer/clay composite thin films that could find use in flexible electronics and food packaging. [Display omitted] •We create polymer nanocomposite thin films from polyelectrolytes and clay platelets.•Oxygen permeability of our films exceeds common films used in research and industries.•Gas permeability can be controlled by interdiffusion of the polyelectrolytes.•This technique can be exploited for gas separation/purification purposes.</description><subject>Assemblies</subject><subject>Barriers</subject><subject>Chemistry</subject><subject>Clay (material)</subject><subject>Colloidal state and disperse state</subject><subject>Deposition</subject><subject>Exact sciences and technology</subject><subject>Gas barrier</subject><subject>General and physical chemistry</subject><subject>Ionization</subject><subject>Layer-by-layer assembly</subject><subject>Membranes</subject><subject>Nanobrick wall</subject><subject>Nanostructure</subject><subject>Polyetherimides</subject><subject>PVAm</subject><subject>Thin films</subject><subject>Walls</subject><issn>0376-7388</issn><issn>1873-3123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkc1q3DAUhUVpoNOkb9CFNoVuPNGPbWk2hRKaNhDIpl0LWboqmsryRLJb5gHy3rnuDF02ICFx-I6uOIeQ95xtOeP99X47wlhd3ArGJUpbJnevyIZrJRvJhXxNNkyqvlFS6zfkba17xrhierchT3c5pAWyAzoFepjScYRCY56h-BjCUuOUqc2eumSP1E0I5rnYeZVx_bSVDraUiKazHxK4ueBlhuu_pmzzNJToftE_NiX6uFiPMhpsrTAOKUK9IhfBpgrvzucl-XH75fvNt-b-4evdzef7xrVyNzfKBe9817ZtkN5J7brdMFjvwAWtBPNe9trLIEAGF5RSTAjQurWtFUjjviQfT-8eyvS4QJ3NGKuDlGyGaamGq052GFUnX0Y7gX_qu75DtD2hrky1FgjmUOJoy9FwZtaCzN6cCjJrQauKBaHtw3mCrc6mUGx2sf7zCi1xRN8j9-nEASbzG5M2-NLamI8FozZ-iv8f9Awf3Kyb</recordid><startdate>20140215</startdate><enddate>20140215</enddate><creator>Tzeng, Ping</creator><creator>Maupin, Cale R.</creator><creator>Grunlan, Jaime C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140215</creationdate><title>Influence of polymer interdiffusion and clay concentration on gas barrier of polyelectrolyte/clay nanobrick wall quadlayer assemblies</title><author>Tzeng, Ping ; Maupin, Cale R. ; Grunlan, Jaime C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-7cfdcd5444f3dc38c59bbadcecf8720dd368d3f2e3fcf777022e884a4a2c382c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Assemblies</topic><topic>Barriers</topic><topic>Chemistry</topic><topic>Clay (material)</topic><topic>Colloidal state and disperse state</topic><topic>Deposition</topic><topic>Exact sciences and technology</topic><topic>Gas barrier</topic><topic>General and physical chemistry</topic><topic>Ionization</topic><topic>Layer-by-layer assembly</topic><topic>Membranes</topic><topic>Nanobrick wall</topic><topic>Nanostructure</topic><topic>Polyetherimides</topic><topic>PVAm</topic><topic>Thin films</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tzeng, Ping</creatorcontrib><creatorcontrib>Maupin, Cale R.</creatorcontrib><creatorcontrib>Grunlan, Jaime C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of membrane science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tzeng, Ping</au><au>Maupin, Cale R.</au><au>Grunlan, Jaime C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of polymer interdiffusion and clay concentration on gas barrier of polyelectrolyte/clay nanobrick wall quadlayer assemblies</atitle><jtitle>Journal of membrane science</jtitle><date>2014-02-15</date><risdate>2014</risdate><volume>452</volume><spage>46</spage><epage>53</epage><pages>46-53</pages><issn>0376-7388</issn><eissn>1873-3123</eissn><coden>JMESDO</coden><abstract>Thin film assemblies of polyvinylamine (PVAm), branched polyethylenimine (PEI), poly(acrylic acid) (PAA) and sodium montmorillonite (MMT) clay, created using the layer-by-layer assembly technique, demonstrate the influence of polymer interdiffusion and clay concentration on oxygen barrier behavior. These quadlayer (QL) assemblies can be switched from linear to exponential growth by varying the placement of PVAm and PEI layers. PEI has a much lower Tg and is better able to interdiffuse with PAA, resulting in exponential growth and greater clay deposition in each layer. When deposited on 179μm poly(ethylene terephthalate) (PET), these ‘nanobrick wall’ thin films only decreased visible light transmission by 2% as the thickness increased by a factor of 10, indicating that clay platelets are highly oriented and well separated. Atomic force and transmission electron microscope images also reveal this high level of clay orientation that creates an extended gas diffusion pathway that dramatically reduces oxygen transmission rate (OTR). A 6QL PVAm-based assembly, with a thickness of 175nm, has an OTR of 0.009cm3/(m2dayatm). OTR was found to be linked to both the degree of polymer interaction and clay concentration in these thin films. The desired barrier can be obtained by substituting PVAm layers for PEI. This study demonstrates a promising technique for tailoring the gas barrier of polymer/clay composite thin films that could find use in flexible electronics and food packaging. [Display omitted] •We create polymer nanocomposite thin films from polyelectrolytes and clay platelets.•Oxygen permeability of our films exceeds common films used in research and industries.•Gas permeability can be controlled by interdiffusion of the polyelectrolytes.•This technique can be exploited for gas separation/purification purposes.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.memsci.2013.10.039</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0376-7388
ispartof Journal of membrane science, 2014-02, Vol.452, p.46-53
issn 0376-7388
1873-3123
language eng
recordid cdi_proquest_miscellaneous_1753503753
source Elsevier ScienceDirect Journals
subjects Assemblies
Barriers
Chemistry
Clay (material)
Colloidal state and disperse state
Deposition
Exact sciences and technology
Gas barrier
General and physical chemistry
Ionization
Layer-by-layer assembly
Membranes
Nanobrick wall
Nanostructure
Polyetherimides
PVAm
Thin films
Walls
title Influence of polymer interdiffusion and clay concentration on gas barrier of polyelectrolyte/clay nanobrick wall quadlayer assemblies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A45%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20polymer%20interdiffusion%20and%20clay%20concentration%20on%20gas%20barrier%20of%20polyelectrolyte/clay%20nanobrick%20wall%20quadlayer%20assemblies&rft.jtitle=Journal%20of%20membrane%20science&rft.au=Tzeng,%20Ping&rft.date=2014-02-15&rft.volume=452&rft.spage=46&rft.epage=53&rft.pages=46-53&rft.issn=0376-7388&rft.eissn=1873-3123&rft.coden=JMESDO&rft_id=info:doi/10.1016/j.memsci.2013.10.039&rft_dat=%3Cproquest_cross%3E1753503753%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524396565&rft_id=info:pmid/&rft_els_id=S0376738813008430&rfr_iscdi=true