Effective plan retrieval in case-based planning for metric-temporal problems

Case-based planning (CBP) is an approach to planning where previous planning experience stored in a case base provides guidance to solving new problems. Such a guidance can be extremely useful when the new problem is very hard to solve, or the stored previous experience is highly valuable (because,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental & theoretical artificial intelligence 2015-09, Vol.27 (5), p.603-647
Hauptverfasser: Bonisoli, Andrea, Gerevini, Alfonso Emilio, Saetti, Alessandro, Serina, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 647
container_issue 5
container_start_page 603
container_title Journal of experimental & theoretical artificial intelligence
container_volume 27
creator Bonisoli, Andrea
Gerevini, Alfonso Emilio
Saetti, Alessandro
Serina, Ivan
description Case-based planning (CBP) is an approach to planning where previous planning experience stored in a case base provides guidance to solving new problems. Such a guidance can be extremely useful when the new problem is very hard to solve, or the stored previous experience is highly valuable (because, e.g. it was provided and/or validated by human experts) and the system should try to reuse it as much as possible. In this work, we address CBP in PDDL domains with real-valued fluents, action durations and timed-initial literals, which are essential to model real-world planning problems involving continuous resources and temporal constraints. We propose some new heuristic techniques for retrieving a plan from a library of existing plans that is promising for solving a new planning problem encountered by the CBP system, i.e. that can be efficiently adapted to solve the new problem. The effectiveness of these techniques, which derive much of their power from the proposed use of the numerical/temporal information in the planning problem specification and in the library plans, is evaluated through an experimental analysis.
doi_str_mv 10.1080/0952813X.2014.993506
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753497783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3827781361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-8d5418bf16e3d65c15001e0f7ce13fa453e46f47bbc83291e1ae12fa1910d4b53</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxgisbCk-GI7iSeEqvIhVWIBic1ynDNKlcTFTov673EILAwsd8M9d_fqIeQS6AJoSW-oFFkJ7G2RUeALKZmg-RGZAcuzlNFCHpPZiKQjc0rOQthQSkEAzMh6ZS2aodljsm11n3gcfIN73SZNnxgdMK1iqb-HfdO_J9b5pBshkw7YbZ2P6Na7qsUunJMTq9uAFz99Tl7vVy_Lx3T9_PC0vFunhrNySMtacCgrCzmyOhcGREyD1BYGgVnNBUOeW15UlSlZJgFBI2RWgwRa80qwObme7sbHHzsMg-qaYLCNGdHtgoJCMC6LomQRvfqDbtzO9zFdpEBmnOVFESk-Uca7EDxatfVNp_1BAVWjYvWrWI2K1aQ4rt1Oa00ftXT60_m2VoM-tM5br3vTBMX-vfAFhMSCNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719243677</pqid></control><display><type>article</type><title>Effective plan retrieval in case-based planning for metric-temporal problems</title><source>Business Source Complete</source><creator>Bonisoli, Andrea ; Gerevini, Alfonso Emilio ; Saetti, Alessandro ; Serina, Ivan</creator><creatorcontrib>Bonisoli, Andrea ; Gerevini, Alfonso Emilio ; Saetti, Alessandro ; Serina, Ivan</creatorcontrib><description>Case-based planning (CBP) is an approach to planning where previous planning experience stored in a case base provides guidance to solving new problems. Such a guidance can be extremely useful when the new problem is very hard to solve, or the stored previous experience is highly valuable (because, e.g. it was provided and/or validated by human experts) and the system should try to reuse it as much as possible. In this work, we address CBP in PDDL domains with real-valued fluents, action durations and timed-initial literals, which are essential to model real-world planning problems involving continuous resources and temporal constraints. We propose some new heuristic techniques for retrieving a plan from a library of existing plans that is promising for solving a new planning problem encountered by the CBP system, i.e. that can be efficiently adapted to solve the new problem. The effectiveness of these techniques, which derive much of their power from the proposed use of the numerical/temporal information in the planning problem specification and in the library plans, is evaluated through an experimental analysis.</description><identifier>ISSN: 0952-813X</identifier><identifier>EISSN: 1362-3079</identifier><identifier>DOI: 10.1080/0952813X.2014.993506</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Artificial intelligence ; case-based planning ; Effectiveness ; Expert systems ; Heuristic ; Human ; Libraries ; Mathematical models ; metric-temporal planning ; plan retrieval ; Planning ; Problem solving ; Reuse ; Specifications ; Temporal logic</subject><ispartof>Journal of experimental &amp; theoretical artificial intelligence, 2015-09, Vol.27 (5), p.603-647</ispartof><rights>2015 Taylor &amp; Francis 2015</rights><rights>Copyright Taylor &amp; Francis Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-8d5418bf16e3d65c15001e0f7ce13fa453e46f47bbc83291e1ae12fa1910d4b53</citedby><cites>FETCH-LOGICAL-c438t-8d5418bf16e3d65c15001e0f7ce13fa453e46f47bbc83291e1ae12fa1910d4b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bonisoli, Andrea</creatorcontrib><creatorcontrib>Gerevini, Alfonso Emilio</creatorcontrib><creatorcontrib>Saetti, Alessandro</creatorcontrib><creatorcontrib>Serina, Ivan</creatorcontrib><title>Effective plan retrieval in case-based planning for metric-temporal problems</title><title>Journal of experimental &amp; theoretical artificial intelligence</title><description>Case-based planning (CBP) is an approach to planning where previous planning experience stored in a case base provides guidance to solving new problems. Such a guidance can be extremely useful when the new problem is very hard to solve, or the stored previous experience is highly valuable (because, e.g. it was provided and/or validated by human experts) and the system should try to reuse it as much as possible. In this work, we address CBP in PDDL domains with real-valued fluents, action durations and timed-initial literals, which are essential to model real-world planning problems involving continuous resources and temporal constraints. We propose some new heuristic techniques for retrieving a plan from a library of existing plans that is promising for solving a new planning problem encountered by the CBP system, i.e. that can be efficiently adapted to solve the new problem. The effectiveness of these techniques, which derive much of their power from the proposed use of the numerical/temporal information in the planning problem specification and in the library plans, is evaluated through an experimental analysis.</description><subject>Artificial intelligence</subject><subject>case-based planning</subject><subject>Effectiveness</subject><subject>Expert systems</subject><subject>Heuristic</subject><subject>Human</subject><subject>Libraries</subject><subject>Mathematical models</subject><subject>metric-temporal planning</subject><subject>plan retrieval</subject><subject>Planning</subject><subject>Problem solving</subject><subject>Reuse</subject><subject>Specifications</subject><subject>Temporal logic</subject><issn>0952-813X</issn><issn>1362-3079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxgisbCk-GI7iSeEqvIhVWIBic1ynDNKlcTFTov673EILAwsd8M9d_fqIeQS6AJoSW-oFFkJ7G2RUeALKZmg-RGZAcuzlNFCHpPZiKQjc0rOQthQSkEAzMh6ZS2aodljsm11n3gcfIN73SZNnxgdMK1iqb-HfdO_J9b5pBshkw7YbZ2P6Na7qsUunJMTq9uAFz99Tl7vVy_Lx3T9_PC0vFunhrNySMtacCgrCzmyOhcGREyD1BYGgVnNBUOeW15UlSlZJgFBI2RWgwRa80qwObme7sbHHzsMg-qaYLCNGdHtgoJCMC6LomQRvfqDbtzO9zFdpEBmnOVFESk-Uca7EDxatfVNp_1BAVWjYvWrWI2K1aQ4rt1Oa00ftXT60_m2VoM-tM5br3vTBMX-vfAFhMSCNg</recordid><startdate>20150903</startdate><enddate>20150903</enddate><creator>Bonisoli, Andrea</creator><creator>Gerevini, Alfonso Emilio</creator><creator>Saetti, Alessandro</creator><creator>Serina, Ivan</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150903</creationdate><title>Effective plan retrieval in case-based planning for metric-temporal problems</title><author>Bonisoli, Andrea ; Gerevini, Alfonso Emilio ; Saetti, Alessandro ; Serina, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-8d5418bf16e3d65c15001e0f7ce13fa453e46f47bbc83291e1ae12fa1910d4b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Artificial intelligence</topic><topic>case-based planning</topic><topic>Effectiveness</topic><topic>Expert systems</topic><topic>Heuristic</topic><topic>Human</topic><topic>Libraries</topic><topic>Mathematical models</topic><topic>metric-temporal planning</topic><topic>plan retrieval</topic><topic>Planning</topic><topic>Problem solving</topic><topic>Reuse</topic><topic>Specifications</topic><topic>Temporal logic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonisoli, Andrea</creatorcontrib><creatorcontrib>Gerevini, Alfonso Emilio</creatorcontrib><creatorcontrib>Saetti, Alessandro</creatorcontrib><creatorcontrib>Serina, Ivan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of experimental &amp; theoretical artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonisoli, Andrea</au><au>Gerevini, Alfonso Emilio</au><au>Saetti, Alessandro</au><au>Serina, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective plan retrieval in case-based planning for metric-temporal problems</atitle><jtitle>Journal of experimental &amp; theoretical artificial intelligence</jtitle><date>2015-09-03</date><risdate>2015</risdate><volume>27</volume><issue>5</issue><spage>603</spage><epage>647</epage><pages>603-647</pages><issn>0952-813X</issn><eissn>1362-3079</eissn><abstract>Case-based planning (CBP) is an approach to planning where previous planning experience stored in a case base provides guidance to solving new problems. Such a guidance can be extremely useful when the new problem is very hard to solve, or the stored previous experience is highly valuable (because, e.g. it was provided and/or validated by human experts) and the system should try to reuse it as much as possible. In this work, we address CBP in PDDL domains with real-valued fluents, action durations and timed-initial literals, which are essential to model real-world planning problems involving continuous resources and temporal constraints. We propose some new heuristic techniques for retrieving a plan from a library of existing plans that is promising for solving a new planning problem encountered by the CBP system, i.e. that can be efficiently adapted to solve the new problem. The effectiveness of these techniques, which derive much of their power from the proposed use of the numerical/temporal information in the planning problem specification and in the library plans, is evaluated through an experimental analysis.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/0952813X.2014.993506</doi><tpages>45</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0952-813X
ispartof Journal of experimental & theoretical artificial intelligence, 2015-09, Vol.27 (5), p.603-647
issn 0952-813X
1362-3079
language eng
recordid cdi_proquest_miscellaneous_1753497783
source Business Source Complete
subjects Artificial intelligence
case-based planning
Effectiveness
Expert systems
Heuristic
Human
Libraries
Mathematical models
metric-temporal planning
plan retrieval
Planning
Problem solving
Reuse
Specifications
Temporal logic
title Effective plan retrieval in case-based planning for metric-temporal problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A25%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20plan%20retrieval%20in%20case-based%20planning%20for%20metric-temporal%20problems&rft.jtitle=Journal%20of%20experimental%20&%20theoretical%20artificial%20intelligence&rft.au=Bonisoli,%20Andrea&rft.date=2015-09-03&rft.volume=27&rft.issue=5&rft.spage=603&rft.epage=647&rft.pages=603-647&rft.issn=0952-813X&rft.eissn=1362-3079&rft_id=info:doi/10.1080/0952813X.2014.993506&rft_dat=%3Cproquest_infor%3E3827781361%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1719243677&rft_id=info:pmid/&rfr_iscdi=true