Scaling form of zero-field-cooled and field-cooled susceptibility in superparamagnet
The scaling form of the normalized ZFC and FC susceptibility of superparamagnets (SPMs) is presented as a function of the normalized temperature y ( = k B T / K u 〈 V 〉 ) , normalized magnetic field h (= H/ H K ), and the width σ of the log-normal distribution of the volumes of nanoparticles, based...
Gespeichert in:
Veröffentlicht in: | Journal of magnetism and magnetic materials 2010-10, Vol.322 (20), p.3178-3185 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3185 |
---|---|
container_issue | 20 |
container_start_page | 3178 |
container_title | Journal of magnetism and magnetic materials |
container_volume | 322 |
creator | Suzuki, Masatsugu Fullem, Sharbani I. Suzuki, Itsuko S. |
description | The scaling form of the normalized ZFC and FC susceptibility of superparamagnets (SPMs) is presented as a function of the normalized temperature
y
(
=
k
B
T
/
K
u
〈
V
〉
)
, normalized magnetic field
h (=
H/
H
K
), and the width
σ
of the log-normal distribution of the volumes of nanoparticles, based on the superparamagnetic blocking model with no interaction between the nanoparticles. Here
〈
V
〉
is the average volume,
K
u
is the anisotropy energy, and
H
K
is the anisotropy field. Main features of the experimental results reported in many SPMs can be well explained in terms of the present model. The normalized FC susceptibility monotonically increases as the normalized temperature
y decreases. The normalized ZFC susceptibility exhibits a peak at the normalized blocking temperature
y
b
(
=
k
B
T
b
/
K
u
〈
V
〉
)
, forming the
y
b
vs
h diagram. For large
σ
(
σ
>
0.4
)
,
y
b
starts to increase with increasing
h, showing a peak at
h=
h
b
, and decreases with further increasing
h. The maximum of
y
b
at
h=
h
b
is due to the nonlinearity of the Langevin function. For small
σ
,
y
b
monotonically decreases with increasing
h. The derivative of the normalized FC magnetization with respect to
h shows a peak at
h=0 for small
y. This is closely related to the pinched form of
M
FC
vs
H curve around
H=0 observed in SPMs. |
doi_str_mv | 10.1016/j.jmmm.2010.05.057 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753495951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885310003744</els_id><sourcerecordid>1266755713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-17a2799419c9fcce1a9463144eb4cdb60d7c51946892288059c8191c1e31f2aa3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhvegYK3-AU97EbxszeRjdwNepPgFBQ_Wc0izk5Kyu1mTrVB_vSktgheFgYGXZ2aSJ8uugMyAQHm7mW26rptRkgIiUlUn2YQwwou6FuwsO49xQwgBXpeTbPlmdOv6dW596HJv8y8MvrAO26Yw3rfY5Lpv8l9B3EaDw-hWrnXjLnd9SgYMgw660-sex4vs1Oo24uWxT7P3x4fl_LlYvD69zO8XhWGyHAuoNK2k5CCNtMYgaMlLBpzjiptmVZKmMgJSVktK65oIaWqQYAAZWKo1m2Y3h71D8B9bjKPqXHpa2-oe_TYqqATjUkgB_6O0LCshKmAJpQfUBB9jQKuG4DoddgqI2htWG7U3rPaGFRGpqjR0fdyvYzJqg-6Niz-TlBEq0w8Sd3fgMHn5dBhUNA57g40LaEbVePfXmW_1kpMV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266755713</pqid></control><display><type>article</type><title>Scaling form of zero-field-cooled and field-cooled susceptibility in superparamagnet</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Suzuki, Masatsugu ; Fullem, Sharbani I. ; Suzuki, Itsuko S.</creator><creatorcontrib>Suzuki, Masatsugu ; Fullem, Sharbani I. ; Suzuki, Itsuko S.</creatorcontrib><description>The scaling form of the normalized ZFC and FC susceptibility of superparamagnets (SPMs) is presented as a function of the normalized temperature
y
(
=
k
B
T
/
K
u
〈
V
〉
)
, normalized magnetic field
h (=
H/
H
K
), and the width
σ
of the log-normal distribution of the volumes of nanoparticles, based on the superparamagnetic blocking model with no interaction between the nanoparticles. Here
〈
V
〉
is the average volume,
K
u
is the anisotropy energy, and
H
K
is the anisotropy field. Main features of the experimental results reported in many SPMs can be well explained in terms of the present model. The normalized FC susceptibility monotonically increases as the normalized temperature
y decreases. The normalized ZFC susceptibility exhibits a peak at the normalized blocking temperature
y
b
(
=
k
B
T
b
/
K
u
〈
V
〉
)
, forming the
y
b
vs
h diagram. For large
σ
(
σ
>
0.4
)
,
y
b
starts to increase with increasing
h, showing a peak at
h=
h
b
, and decreases with further increasing
h. The maximum of
y
b
at
h=
h
b
is due to the nonlinearity of the Langevin function. For small
σ
,
y
b
monotonically decreases with increasing
h. The derivative of the normalized FC magnetization with respect to
h shows a peak at
h=0 for small
y. This is closely related to the pinched form of
M
FC
vs
H curve around
H=0 observed in SPMs.</description><identifier>ISSN: 0304-8853</identifier><identifier>DOI: 10.1016/j.jmmm.2010.05.057</identifier><identifier>CODEN: JMMMDC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropy ; Blocked state ; Brackets ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Derivatives ; Diamagnetism, paramagnetism and superparamagnetism ; Exact sciences and technology ; Magnetic fields ; Magnetic permeability ; Magnetic properties and materials ; Mathematical analysis ; Mathematical models ; Nanoparticles ; Physics ; Superparamagnet</subject><ispartof>Journal of magnetism and magnetic materials, 2010-10, Vol.322 (20), p.3178-3185</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-17a2799419c9fcce1a9463144eb4cdb60d7c51946892288059c8191c1e31f2aa3</citedby><cites>FETCH-LOGICAL-c396t-17a2799419c9fcce1a9463144eb4cdb60d7c51946892288059c8191c1e31f2aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmmm.2010.05.057$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23029805$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Suzuki, Masatsugu</creatorcontrib><creatorcontrib>Fullem, Sharbani I.</creatorcontrib><creatorcontrib>Suzuki, Itsuko S.</creatorcontrib><title>Scaling form of zero-field-cooled and field-cooled susceptibility in superparamagnet</title><title>Journal of magnetism and magnetic materials</title><description>The scaling form of the normalized ZFC and FC susceptibility of superparamagnets (SPMs) is presented as a function of the normalized temperature
y
(
=
k
B
T
/
K
u
〈
V
〉
)
, normalized magnetic field
h (=
H/
H
K
), and the width
σ
of the log-normal distribution of the volumes of nanoparticles, based on the superparamagnetic blocking model with no interaction between the nanoparticles. Here
〈
V
〉
is the average volume,
K
u
is the anisotropy energy, and
H
K
is the anisotropy field. Main features of the experimental results reported in many SPMs can be well explained in terms of the present model. The normalized FC susceptibility monotonically increases as the normalized temperature
y decreases. The normalized ZFC susceptibility exhibits a peak at the normalized blocking temperature
y
b
(
=
k
B
T
b
/
K
u
〈
V
〉
)
, forming the
y
b
vs
h diagram. For large
σ
(
σ
>
0.4
)
,
y
b
starts to increase with increasing
h, showing a peak at
h=
h
b
, and decreases with further increasing
h. The maximum of
y
b
at
h=
h
b
is due to the nonlinearity of the Langevin function. For small
σ
,
y
b
monotonically decreases with increasing
h. The derivative of the normalized FC magnetization with respect to
h shows a peak at
h=0 for small
y. This is closely related to the pinched form of
M
FC
vs
H curve around
H=0 observed in SPMs.</description><subject>Anisotropy</subject><subject>Blocked state</subject><subject>Brackets</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Derivatives</subject><subject>Diamagnetism, paramagnetism and superparamagnetism</subject><subject>Exact sciences and technology</subject><subject>Magnetic fields</subject><subject>Magnetic permeability</subject><subject>Magnetic properties and materials</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nanoparticles</subject><subject>Physics</subject><subject>Superparamagnet</subject><issn>0304-8853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhvegYK3-AU97EbxszeRjdwNepPgFBQ_Wc0izk5Kyu1mTrVB_vSktgheFgYGXZ2aSJ8uugMyAQHm7mW26rptRkgIiUlUn2YQwwou6FuwsO49xQwgBXpeTbPlmdOv6dW596HJv8y8MvrAO26Yw3rfY5Lpv8l9B3EaDw-hWrnXjLnd9SgYMgw660-sex4vs1Oo24uWxT7P3x4fl_LlYvD69zO8XhWGyHAuoNK2k5CCNtMYgaMlLBpzjiptmVZKmMgJSVktK65oIaWqQYAAZWKo1m2Y3h71D8B9bjKPqXHpa2-oe_TYqqATjUkgB_6O0LCshKmAJpQfUBB9jQKuG4DoddgqI2htWG7U3rPaGFRGpqjR0fdyvYzJqg-6Niz-TlBEq0w8Sd3fgMHn5dBhUNA57g40LaEbVePfXmW_1kpMV</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Suzuki, Masatsugu</creator><creator>Fullem, Sharbani I.</creator><creator>Suzuki, Itsuko S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7SR</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20101001</creationdate><title>Scaling form of zero-field-cooled and field-cooled susceptibility in superparamagnet</title><author>Suzuki, Masatsugu ; Fullem, Sharbani I. ; Suzuki, Itsuko S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-17a2799419c9fcce1a9463144eb4cdb60d7c51946892288059c8191c1e31f2aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anisotropy</topic><topic>Blocked state</topic><topic>Brackets</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Derivatives</topic><topic>Diamagnetism, paramagnetism and superparamagnetism</topic><topic>Exact sciences and technology</topic><topic>Magnetic fields</topic><topic>Magnetic permeability</topic><topic>Magnetic properties and materials</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nanoparticles</topic><topic>Physics</topic><topic>Superparamagnet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, Masatsugu</creatorcontrib><creatorcontrib>Fullem, Sharbani I.</creatorcontrib><creatorcontrib>Suzuki, Itsuko S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suzuki, Masatsugu</au><au>Fullem, Sharbani I.</au><au>Suzuki, Itsuko S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling form of zero-field-cooled and field-cooled susceptibility in superparamagnet</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>322</volume><issue>20</issue><spage>3178</spage><epage>3185</epage><pages>3178-3185</pages><issn>0304-8853</issn><coden>JMMMDC</coden><abstract>The scaling form of the normalized ZFC and FC susceptibility of superparamagnets (SPMs) is presented as a function of the normalized temperature
y
(
=
k
B
T
/
K
u
〈
V
〉
)
, normalized magnetic field
h (=
H/
H
K
), and the width
σ
of the log-normal distribution of the volumes of nanoparticles, based on the superparamagnetic blocking model with no interaction between the nanoparticles. Here
〈
V
〉
is the average volume,
K
u
is the anisotropy energy, and
H
K
is the anisotropy field. Main features of the experimental results reported in many SPMs can be well explained in terms of the present model. The normalized FC susceptibility monotonically increases as the normalized temperature
y decreases. The normalized ZFC susceptibility exhibits a peak at the normalized blocking temperature
y
b
(
=
k
B
T
b
/
K
u
〈
V
〉
)
, forming the
y
b
vs
h diagram. For large
σ
(
σ
>
0.4
)
,
y
b
starts to increase with increasing
h, showing a peak at
h=
h
b
, and decreases with further increasing
h. The maximum of
y
b
at
h=
h
b
is due to the nonlinearity of the Langevin function. For small
σ
,
y
b
monotonically decreases with increasing
h. The derivative of the normalized FC magnetization with respect to
h shows a peak at
h=0 for small
y. This is closely related to the pinched form of
M
FC
vs
H curve around
H=0 observed in SPMs.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2010.05.057</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-8853 |
ispartof | Journal of magnetism and magnetic materials, 2010-10, Vol.322 (20), p.3178-3185 |
issn | 0304-8853 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753495951 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Anisotropy Blocked state Brackets Condensed matter: electronic structure, electrical, magnetic, and optical properties Derivatives Diamagnetism, paramagnetism and superparamagnetism Exact sciences and technology Magnetic fields Magnetic permeability Magnetic properties and materials Mathematical analysis Mathematical models Nanoparticles Physics Superparamagnet |
title | Scaling form of zero-field-cooled and field-cooled susceptibility in superparamagnet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20form%20of%20zero-field-cooled%20and%20field-cooled%20susceptibility%20in%20superparamagnet&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Suzuki,%20Masatsugu&rft.date=2010-10-01&rft.volume=322&rft.issue=20&rft.spage=3178&rft.epage=3185&rft.pages=3178-3185&rft.issn=0304-8853&rft.coden=JMMMDC&rft_id=info:doi/10.1016/j.jmmm.2010.05.057&rft_dat=%3Cproquest_cross%3E1266755713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266755713&rft_id=info:pmid/&rft_els_id=S0304885310003744&rfr_iscdi=true |