Scaling form of zero-field-cooled and field-cooled susceptibility in superparamagnet

The scaling form of the normalized ZFC and FC susceptibility of superparamagnets (SPMs) is presented as a function of the normalized temperature y ( = k B T / K u 〈 V 〉 ) , normalized magnetic field h (= H/ H K ), and the width σ of the log-normal distribution of the volumes of nanoparticles, based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials 2010-10, Vol.322 (20), p.3178-3185
Hauptverfasser: Suzuki, Masatsugu, Fullem, Sharbani I., Suzuki, Itsuko S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3185
container_issue 20
container_start_page 3178
container_title Journal of magnetism and magnetic materials
container_volume 322
creator Suzuki, Masatsugu
Fullem, Sharbani I.
Suzuki, Itsuko S.
description The scaling form of the normalized ZFC and FC susceptibility of superparamagnets (SPMs) is presented as a function of the normalized temperature y ( = k B T / K u 〈 V 〉 ) , normalized magnetic field h (= H/ H K ), and the width σ of the log-normal distribution of the volumes of nanoparticles, based on the superparamagnetic blocking model with no interaction between the nanoparticles. Here 〈 V 〉 is the average volume, K u is the anisotropy energy, and H K is the anisotropy field. Main features of the experimental results reported in many SPMs can be well explained in terms of the present model. The normalized FC susceptibility monotonically increases as the normalized temperature y decreases. The normalized ZFC susceptibility exhibits a peak at the normalized blocking temperature y b ( = k B T b / K u 〈 V 〉 ) , forming the y b vs h diagram. For large σ ( σ > 0.4 ) , y b starts to increase with increasing h, showing a peak at h= h b , and decreases with further increasing h. The maximum of y b at h= h b is due to the nonlinearity of the Langevin function. For small σ , y b monotonically decreases with increasing h. The derivative of the normalized FC magnetization with respect to h shows a peak at h=0 for small y. This is closely related to the pinched form of M FC vs H curve around H=0 observed in SPMs.
doi_str_mv 10.1016/j.jmmm.2010.05.057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753495951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885310003744</els_id><sourcerecordid>1266755713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-17a2799419c9fcce1a9463144eb4cdb60d7c51946892288059c8191c1e31f2aa3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhvegYK3-AU97EbxszeRjdwNepPgFBQ_Wc0izk5Kyu1mTrVB_vSktgheFgYGXZ2aSJ8uugMyAQHm7mW26rptRkgIiUlUn2YQwwou6FuwsO49xQwgBXpeTbPlmdOv6dW596HJv8y8MvrAO26Yw3rfY5Lpv8l9B3EaDw-hWrnXjLnd9SgYMgw660-sex4vs1Oo24uWxT7P3x4fl_LlYvD69zO8XhWGyHAuoNK2k5CCNtMYgaMlLBpzjiptmVZKmMgJSVktK65oIaWqQYAAZWKo1m2Y3h71D8B9bjKPqXHpa2-oe_TYqqATjUkgB_6O0LCshKmAJpQfUBB9jQKuG4DoddgqI2htWG7U3rPaGFRGpqjR0fdyvYzJqg-6Niz-TlBEq0w8Sd3fgMHn5dBhUNA57g40LaEbVePfXmW_1kpMV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266755713</pqid></control><display><type>article</type><title>Scaling form of zero-field-cooled and field-cooled susceptibility in superparamagnet</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Suzuki, Masatsugu ; Fullem, Sharbani I. ; Suzuki, Itsuko S.</creator><creatorcontrib>Suzuki, Masatsugu ; Fullem, Sharbani I. ; Suzuki, Itsuko S.</creatorcontrib><description>The scaling form of the normalized ZFC and FC susceptibility of superparamagnets (SPMs) is presented as a function of the normalized temperature y ( = k B T / K u 〈 V 〉 ) , normalized magnetic field h (= H/ H K ), and the width σ of the log-normal distribution of the volumes of nanoparticles, based on the superparamagnetic blocking model with no interaction between the nanoparticles. Here 〈 V 〉 is the average volume, K u is the anisotropy energy, and H K is the anisotropy field. Main features of the experimental results reported in many SPMs can be well explained in terms of the present model. The normalized FC susceptibility monotonically increases as the normalized temperature y decreases. The normalized ZFC susceptibility exhibits a peak at the normalized blocking temperature y b ( = k B T b / K u 〈 V 〉 ) , forming the y b vs h diagram. For large σ ( σ &gt; 0.4 ) , y b starts to increase with increasing h, showing a peak at h= h b , and decreases with further increasing h. The maximum of y b at h= h b is due to the nonlinearity of the Langevin function. For small σ , y b monotonically decreases with increasing h. The derivative of the normalized FC magnetization with respect to h shows a peak at h=0 for small y. This is closely related to the pinched form of M FC vs H curve around H=0 observed in SPMs.</description><identifier>ISSN: 0304-8853</identifier><identifier>DOI: 10.1016/j.jmmm.2010.05.057</identifier><identifier>CODEN: JMMMDC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropy ; Blocked state ; Brackets ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Derivatives ; Diamagnetism, paramagnetism and superparamagnetism ; Exact sciences and technology ; Magnetic fields ; Magnetic permeability ; Magnetic properties and materials ; Mathematical analysis ; Mathematical models ; Nanoparticles ; Physics ; Superparamagnet</subject><ispartof>Journal of magnetism and magnetic materials, 2010-10, Vol.322 (20), p.3178-3185</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-17a2799419c9fcce1a9463144eb4cdb60d7c51946892288059c8191c1e31f2aa3</citedby><cites>FETCH-LOGICAL-c396t-17a2799419c9fcce1a9463144eb4cdb60d7c51946892288059c8191c1e31f2aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmmm.2010.05.057$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23029805$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Suzuki, Masatsugu</creatorcontrib><creatorcontrib>Fullem, Sharbani I.</creatorcontrib><creatorcontrib>Suzuki, Itsuko S.</creatorcontrib><title>Scaling form of zero-field-cooled and field-cooled susceptibility in superparamagnet</title><title>Journal of magnetism and magnetic materials</title><description>The scaling form of the normalized ZFC and FC susceptibility of superparamagnets (SPMs) is presented as a function of the normalized temperature y ( = k B T / K u 〈 V 〉 ) , normalized magnetic field h (= H/ H K ), and the width σ of the log-normal distribution of the volumes of nanoparticles, based on the superparamagnetic blocking model with no interaction between the nanoparticles. Here 〈 V 〉 is the average volume, K u is the anisotropy energy, and H K is the anisotropy field. Main features of the experimental results reported in many SPMs can be well explained in terms of the present model. The normalized FC susceptibility monotonically increases as the normalized temperature y decreases. The normalized ZFC susceptibility exhibits a peak at the normalized blocking temperature y b ( = k B T b / K u 〈 V 〉 ) , forming the y b vs h diagram. For large σ ( σ &gt; 0.4 ) , y b starts to increase with increasing h, showing a peak at h= h b , and decreases with further increasing h. The maximum of y b at h= h b is due to the nonlinearity of the Langevin function. For small σ , y b monotonically decreases with increasing h. The derivative of the normalized FC magnetization with respect to h shows a peak at h=0 for small y. This is closely related to the pinched form of M FC vs H curve around H=0 observed in SPMs.</description><subject>Anisotropy</subject><subject>Blocked state</subject><subject>Brackets</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Derivatives</subject><subject>Diamagnetism, paramagnetism and superparamagnetism</subject><subject>Exact sciences and technology</subject><subject>Magnetic fields</subject><subject>Magnetic permeability</subject><subject>Magnetic properties and materials</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nanoparticles</subject><subject>Physics</subject><subject>Superparamagnet</subject><issn>0304-8853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhvegYK3-AU97EbxszeRjdwNepPgFBQ_Wc0izk5Kyu1mTrVB_vSktgheFgYGXZ2aSJ8uugMyAQHm7mW26rptRkgIiUlUn2YQwwou6FuwsO49xQwgBXpeTbPlmdOv6dW596HJv8y8MvrAO26Yw3rfY5Lpv8l9B3EaDw-hWrnXjLnd9SgYMgw660-sex4vs1Oo24uWxT7P3x4fl_LlYvD69zO8XhWGyHAuoNK2k5CCNtMYgaMlLBpzjiptmVZKmMgJSVktK65oIaWqQYAAZWKo1m2Y3h71D8B9bjKPqXHpa2-oe_TYqqATjUkgB_6O0LCshKmAJpQfUBB9jQKuG4DoddgqI2htWG7U3rPaGFRGpqjR0fdyvYzJqg-6Niz-TlBEq0w8Sd3fgMHn5dBhUNA57g40LaEbVePfXmW_1kpMV</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Suzuki, Masatsugu</creator><creator>Fullem, Sharbani I.</creator><creator>Suzuki, Itsuko S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7SR</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20101001</creationdate><title>Scaling form of zero-field-cooled and field-cooled susceptibility in superparamagnet</title><author>Suzuki, Masatsugu ; Fullem, Sharbani I. ; Suzuki, Itsuko S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-17a2799419c9fcce1a9463144eb4cdb60d7c51946892288059c8191c1e31f2aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anisotropy</topic><topic>Blocked state</topic><topic>Brackets</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Derivatives</topic><topic>Diamagnetism, paramagnetism and superparamagnetism</topic><topic>Exact sciences and technology</topic><topic>Magnetic fields</topic><topic>Magnetic permeability</topic><topic>Magnetic properties and materials</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nanoparticles</topic><topic>Physics</topic><topic>Superparamagnet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, Masatsugu</creatorcontrib><creatorcontrib>Fullem, Sharbani I.</creatorcontrib><creatorcontrib>Suzuki, Itsuko S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suzuki, Masatsugu</au><au>Fullem, Sharbani I.</au><au>Suzuki, Itsuko S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling form of zero-field-cooled and field-cooled susceptibility in superparamagnet</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>322</volume><issue>20</issue><spage>3178</spage><epage>3185</epage><pages>3178-3185</pages><issn>0304-8853</issn><coden>JMMMDC</coden><abstract>The scaling form of the normalized ZFC and FC susceptibility of superparamagnets (SPMs) is presented as a function of the normalized temperature y ( = k B T / K u 〈 V 〉 ) , normalized magnetic field h (= H/ H K ), and the width σ of the log-normal distribution of the volumes of nanoparticles, based on the superparamagnetic blocking model with no interaction between the nanoparticles. Here 〈 V 〉 is the average volume, K u is the anisotropy energy, and H K is the anisotropy field. Main features of the experimental results reported in many SPMs can be well explained in terms of the present model. The normalized FC susceptibility monotonically increases as the normalized temperature y decreases. The normalized ZFC susceptibility exhibits a peak at the normalized blocking temperature y b ( = k B T b / K u 〈 V 〉 ) , forming the y b vs h diagram. For large σ ( σ &gt; 0.4 ) , y b starts to increase with increasing h, showing a peak at h= h b , and decreases with further increasing h. The maximum of y b at h= h b is due to the nonlinearity of the Langevin function. For small σ , y b monotonically decreases with increasing h. The derivative of the normalized FC magnetization with respect to h shows a peak at h=0 for small y. This is closely related to the pinched form of M FC vs H curve around H=0 observed in SPMs.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2010.05.057</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2010-10, Vol.322 (20), p.3178-3185
issn 0304-8853
language eng
recordid cdi_proquest_miscellaneous_1753495951
source Elsevier ScienceDirect Journals Complete
subjects Anisotropy
Blocked state
Brackets
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Derivatives
Diamagnetism, paramagnetism and superparamagnetism
Exact sciences and technology
Magnetic fields
Magnetic permeability
Magnetic properties and materials
Mathematical analysis
Mathematical models
Nanoparticles
Physics
Superparamagnet
title Scaling form of zero-field-cooled and field-cooled susceptibility in superparamagnet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20form%20of%20zero-field-cooled%20and%20field-cooled%20susceptibility%20in%20superparamagnet&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Suzuki,%20Masatsugu&rft.date=2010-10-01&rft.volume=322&rft.issue=20&rft.spage=3178&rft.epage=3185&rft.pages=3178-3185&rft.issn=0304-8853&rft.coden=JMMMDC&rft_id=info:doi/10.1016/j.jmmm.2010.05.057&rft_dat=%3Cproquest_cross%3E1266755713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266755713&rft_id=info:pmid/&rft_els_id=S0304885310003744&rfr_iscdi=true