Ozone Photodissociation: Isotopic and Electronic Branching Ratios for Symmetric and Asymmetric Isotopologues

We present new calculations of the branching ratios between the various electronic and isotopic photodissociation channels of ozone. Special emphasis is placed on the isotopic/isotopologue differences because the contribution of the ozone photodissociation to the oxygen isotope and ozone isotopologu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2012-12, Vol.116 (50), p.12271-12279
Hauptverfasser: Ndengué, Steve Alexandre, Schinke, Reinhard, Gatti, Fabien, Meyer, Hans-Dieter, Jost, Rémy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12279
container_issue 50
container_start_page 12271
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 116
creator Ndengué, Steve Alexandre
Schinke, Reinhard
Gatti, Fabien
Meyer, Hans-Dieter
Jost, Rémy
description We present new calculations of the branching ratios between the various electronic and isotopic photodissociation channels of ozone. Special emphasis is placed on the isotopic/isotopologue differences because the contribution of the ozone photodissociation to the oxygen isotope and ozone isotopologue enrichments or fractionations is important for atmospheric applications. These branching ratios, which depend on photon energy, have been calculated with a full quantum mechanical wavepacket propagation approach: the multiconfiguration time-dependent Hartree (MCTDH) method. Five ozone isotopologues are considered: three symmetric, 16O3 (noted 666), 16O17O16O (676), and 16O18O16O (686); two asymmetric, 16O2 17O (noted 667) and 16O2 18O (668). The 668 and 667 asymmetric isotopologues can dissociate into either 66 + 8 or 68 + 6 for 668 and into 66 + 7 or 67 + 6 for 667. In the ranges of the Chappuis and Hartley bands, the dissociation is very fast and electronic and isotopic branching ratios are obtained from the wavepacket fluxes through complex absorbing potentials (CAPs) located perpendicular to the dissociation channels of the potential energy surfaces (PESs) of the A 1B1 (Chappuis) and B 31A′ (Hartley/Huggins) electronic states. In the range of the Huggins band the dissociation is much slower and the isotopic branching ratios of 667 and 668 asymmetric isotopologues, (e.g; 668 → 66 + 8 or 86 + 6) are obtained from the ratios of two partial absorption cross sections corresponding to the selective excitation of one or the other of the two isomers of Cs symmetry, which dissociate respectively into 66 + 8 and 86 + 6. We find that the photodissociation of the 668 asymmetric isotopologue favors the 68 + 6 channel with a propensity varying between 52% (Hartley) and 54% (Huggins) as a function of the photon energy. The electronic branching ratios to the singlet channel (O3 + hυ → O(1D) + O2(1Δ)) are all close to 90% above ≈32 000 cm–1. Below this energy, the singlet channel is energetically closed and only the triplet channel (O3 + hυ → O(3P) + O2(3Σ)) is open. These branching ratios are required to calculate the photolysis rates of each ozone isotopologue, which in turn contribute to the atomic oxygen and the ozone isotopic enrichments in the atmosphere.
doi_str_mv 10.1021/jp307195v
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753493420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1529952302</sourcerecordid><originalsourceid>FETCH-LOGICAL-a447t-defc7e4b1c7f32aa006db092411d88843cc9086b68fda0816bb2e38d283acdc53</originalsourceid><addsrcrecordid>eNqF0U1LwzAYB_AgipvTg19AehH0UH3y1qbe5pg6GEx8OZc0SbeOtplJK8xPb8fmTsJOyRN-_APPH6FLDHcYCL5frijEOOHfR6iPOYGQE8yPuzuIJOQRTXrozPslAGBK2CnqEYojGjHoo3L2Y2sTvC5sY3XhvVWFbApbPwQT3z2tChXIWgfj0qjG2bobH52s1aKo58HbRvogty54X1eVadxOD_1-3KbY0s5b48_RSS5Lby525wB9Po0_Ri_hdPY8GQ2noWQsbkJtchUblmEV55RICRDpDBLCMNZCCEaVSkBEWSRyLUHgKMuIoUITQaXSitMButnmrpz96v5t0qrwypSlrI1tfYpjTllCGYHDlJMk4YQCOUxJTEnMhNjQ2y1VznrvTJ6uXFFJt04xpJvK0n1lnb3axbZZZfRe_nXUgestkMqnS9u6utvdP0G_g6uePQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273274882</pqid></control><display><type>article</type><title>Ozone Photodissociation: Isotopic and Electronic Branching Ratios for Symmetric and Asymmetric Isotopologues</title><source>ACS Journals</source><creator>Ndengué, Steve Alexandre ; Schinke, Reinhard ; Gatti, Fabien ; Meyer, Hans-Dieter ; Jost, Rémy</creator><creatorcontrib>Ndengué, Steve Alexandre ; Schinke, Reinhard ; Gatti, Fabien ; Meyer, Hans-Dieter ; Jost, Rémy</creatorcontrib><description>We present new calculations of the branching ratios between the various electronic and isotopic photodissociation channels of ozone. Special emphasis is placed on the isotopic/isotopologue differences because the contribution of the ozone photodissociation to the oxygen isotope and ozone isotopologue enrichments or fractionations is important for atmospheric applications. These branching ratios, which depend on photon energy, have been calculated with a full quantum mechanical wavepacket propagation approach: the multiconfiguration time-dependent Hartree (MCTDH) method. Five ozone isotopologues are considered: three symmetric, 16O3 (noted 666), 16O17O16O (676), and 16O18O16O (686); two asymmetric, 16O2 17O (noted 667) and 16O2 18O (668). The 668 and 667 asymmetric isotopologues can dissociate into either 66 + 8 or 68 + 6 for 668 and into 66 + 7 or 67 + 6 for 667. In the ranges of the Chappuis and Hartley bands, the dissociation is very fast and electronic and isotopic branching ratios are obtained from the wavepacket fluxes through complex absorbing potentials (CAPs) located perpendicular to the dissociation channels of the potential energy surfaces (PESs) of the A 1B1 (Chappuis) and B 31A′ (Hartley/Huggins) electronic states. In the range of the Huggins band the dissociation is much slower and the isotopic branching ratios of 667 and 668 asymmetric isotopologues, (e.g; 668 → 66 + 8 or 86 + 6) are obtained from the ratios of two partial absorption cross sections corresponding to the selective excitation of one or the other of the two isomers of Cs symmetry, which dissociate respectively into 66 + 8 and 86 + 6. We find that the photodissociation of the 668 asymmetric isotopologue favors the 68 + 6 channel with a propensity varying between 52% (Hartley) and 54% (Huggins) as a function of the photon energy. The electronic branching ratios to the singlet channel (O3 + hυ → O(1D) + O2(1Δ)) are all close to 90% above ≈32 000 cm–1. Below this energy, the singlet channel is energetically closed and only the triplet channel (O3 + hυ → O(3P) + O2(3Σ)) is open. These branching ratios are required to calculate the photolysis rates of each ozone isotopologue, which in turn contribute to the atomic oxygen and the ozone isotopic enrichments in the atmosphere.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp307195v</identifier><identifier>PMID: 23163640</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Asymmetry ; Channels ; Electronics ; Mathematical analysis ; Ozone ; Photodissociation ; Photons ; Symmetry</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2012-12, Vol.116 (50), p.12271-12279</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a447t-defc7e4b1c7f32aa006db092411d88843cc9086b68fda0816bb2e38d283acdc53</citedby><cites>FETCH-LOGICAL-a447t-defc7e4b1c7f32aa006db092411d88843cc9086b68fda0816bb2e38d283acdc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp307195v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp307195v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23163640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ndengué, Steve Alexandre</creatorcontrib><creatorcontrib>Schinke, Reinhard</creatorcontrib><creatorcontrib>Gatti, Fabien</creatorcontrib><creatorcontrib>Meyer, Hans-Dieter</creatorcontrib><creatorcontrib>Jost, Rémy</creatorcontrib><title>Ozone Photodissociation: Isotopic and Electronic Branching Ratios for Symmetric and Asymmetric Isotopologues</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>We present new calculations of the branching ratios between the various electronic and isotopic photodissociation channels of ozone. Special emphasis is placed on the isotopic/isotopologue differences because the contribution of the ozone photodissociation to the oxygen isotope and ozone isotopologue enrichments or fractionations is important for atmospheric applications. These branching ratios, which depend on photon energy, have been calculated with a full quantum mechanical wavepacket propagation approach: the multiconfiguration time-dependent Hartree (MCTDH) method. Five ozone isotopologues are considered: three symmetric, 16O3 (noted 666), 16O17O16O (676), and 16O18O16O (686); two asymmetric, 16O2 17O (noted 667) and 16O2 18O (668). The 668 and 667 asymmetric isotopologues can dissociate into either 66 + 8 or 68 + 6 for 668 and into 66 + 7 or 67 + 6 for 667. In the ranges of the Chappuis and Hartley bands, the dissociation is very fast and electronic and isotopic branching ratios are obtained from the wavepacket fluxes through complex absorbing potentials (CAPs) located perpendicular to the dissociation channels of the potential energy surfaces (PESs) of the A 1B1 (Chappuis) and B 31A′ (Hartley/Huggins) electronic states. In the range of the Huggins band the dissociation is much slower and the isotopic branching ratios of 667 and 668 asymmetric isotopologues, (e.g; 668 → 66 + 8 or 86 + 6) are obtained from the ratios of two partial absorption cross sections corresponding to the selective excitation of one or the other of the two isomers of Cs symmetry, which dissociate respectively into 66 + 8 and 86 + 6. We find that the photodissociation of the 668 asymmetric isotopologue favors the 68 + 6 channel with a propensity varying between 52% (Hartley) and 54% (Huggins) as a function of the photon energy. The electronic branching ratios to the singlet channel (O3 + hυ → O(1D) + O2(1Δ)) are all close to 90% above ≈32 000 cm–1. Below this energy, the singlet channel is energetically closed and only the triplet channel (O3 + hυ → O(3P) + O2(3Σ)) is open. These branching ratios are required to calculate the photolysis rates of each ozone isotopologue, which in turn contribute to the atomic oxygen and the ozone isotopic enrichments in the atmosphere.</description><subject>Asymmetry</subject><subject>Channels</subject><subject>Electronics</subject><subject>Mathematical analysis</subject><subject>Ozone</subject><subject>Photodissociation</subject><subject>Photons</subject><subject>Symmetry</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0U1LwzAYB_AgipvTg19AehH0UH3y1qbe5pg6GEx8OZc0SbeOtplJK8xPb8fmTsJOyRN-_APPH6FLDHcYCL5frijEOOHfR6iPOYGQE8yPuzuIJOQRTXrozPslAGBK2CnqEYojGjHoo3L2Y2sTvC5sY3XhvVWFbApbPwQT3z2tChXIWgfj0qjG2bobH52s1aKo58HbRvogty54X1eVadxOD_1-3KbY0s5b48_RSS5Lby525wB9Po0_Ri_hdPY8GQ2noWQsbkJtchUblmEV55RICRDpDBLCMNZCCEaVSkBEWSRyLUHgKMuIoUITQaXSitMButnmrpz96v5t0qrwypSlrI1tfYpjTllCGYHDlJMk4YQCOUxJTEnMhNjQ2y1VznrvTJ6uXFFJt04xpJvK0n1lnb3axbZZZfRe_nXUgestkMqnS9u6utvdP0G_g6uePQ</recordid><startdate>20121220</startdate><enddate>20121220</enddate><creator>Ndengué, Steve Alexandre</creator><creator>Schinke, Reinhard</creator><creator>Gatti, Fabien</creator><creator>Meyer, Hans-Dieter</creator><creator>Jost, Rémy</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TG</scope><scope>KL.</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20121220</creationdate><title>Ozone Photodissociation: Isotopic and Electronic Branching Ratios for Symmetric and Asymmetric Isotopologues</title><author>Ndengué, Steve Alexandre ; Schinke, Reinhard ; Gatti, Fabien ; Meyer, Hans-Dieter ; Jost, Rémy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a447t-defc7e4b1c7f32aa006db092411d88843cc9086b68fda0816bb2e38d283acdc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymmetry</topic><topic>Channels</topic><topic>Electronics</topic><topic>Mathematical analysis</topic><topic>Ozone</topic><topic>Photodissociation</topic><topic>Photons</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ndengué, Steve Alexandre</creatorcontrib><creatorcontrib>Schinke, Reinhard</creatorcontrib><creatorcontrib>Gatti, Fabien</creatorcontrib><creatorcontrib>Meyer, Hans-Dieter</creatorcontrib><creatorcontrib>Jost, Rémy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ndengué, Steve Alexandre</au><au>Schinke, Reinhard</au><au>Gatti, Fabien</au><au>Meyer, Hans-Dieter</au><au>Jost, Rémy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ozone Photodissociation: Isotopic and Electronic Branching Ratios for Symmetric and Asymmetric Isotopologues</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2012-12-20</date><risdate>2012</risdate><volume>116</volume><issue>50</issue><spage>12271</spage><epage>12279</epage><pages>12271-12279</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>We present new calculations of the branching ratios between the various electronic and isotopic photodissociation channels of ozone. Special emphasis is placed on the isotopic/isotopologue differences because the contribution of the ozone photodissociation to the oxygen isotope and ozone isotopologue enrichments or fractionations is important for atmospheric applications. These branching ratios, which depend on photon energy, have been calculated with a full quantum mechanical wavepacket propagation approach: the multiconfiguration time-dependent Hartree (MCTDH) method. Five ozone isotopologues are considered: three symmetric, 16O3 (noted 666), 16O17O16O (676), and 16O18O16O (686); two asymmetric, 16O2 17O (noted 667) and 16O2 18O (668). The 668 and 667 asymmetric isotopologues can dissociate into either 66 + 8 or 68 + 6 for 668 and into 66 + 7 or 67 + 6 for 667. In the ranges of the Chappuis and Hartley bands, the dissociation is very fast and electronic and isotopic branching ratios are obtained from the wavepacket fluxes through complex absorbing potentials (CAPs) located perpendicular to the dissociation channels of the potential energy surfaces (PESs) of the A 1B1 (Chappuis) and B 31A′ (Hartley/Huggins) electronic states. In the range of the Huggins band the dissociation is much slower and the isotopic branching ratios of 667 and 668 asymmetric isotopologues, (e.g; 668 → 66 + 8 or 86 + 6) are obtained from the ratios of two partial absorption cross sections corresponding to the selective excitation of one or the other of the two isomers of Cs symmetry, which dissociate respectively into 66 + 8 and 86 + 6. We find that the photodissociation of the 668 asymmetric isotopologue favors the 68 + 6 channel with a propensity varying between 52% (Hartley) and 54% (Huggins) as a function of the photon energy. The electronic branching ratios to the singlet channel (O3 + hυ → O(1D) + O2(1Δ)) are all close to 90% above ≈32 000 cm–1. Below this energy, the singlet channel is energetically closed and only the triplet channel (O3 + hυ → O(3P) + O2(3Σ)) is open. These branching ratios are required to calculate the photolysis rates of each ozone isotopologue, which in turn contribute to the atomic oxygen and the ozone isotopic enrichments in the atmosphere.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23163640</pmid><doi>10.1021/jp307195v</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2012-12, Vol.116 (50), p.12271-12279
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_1753493420
source ACS Journals
subjects Asymmetry
Channels
Electronics
Mathematical analysis
Ozone
Photodissociation
Photons
Symmetry
title Ozone Photodissociation: Isotopic and Electronic Branching Ratios for Symmetric and Asymmetric Isotopologues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A07%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ozone%20Photodissociation:%20Isotopic%20and%20Electronic%20Branching%20Ratios%20for%20Symmetric%20and%20Asymmetric%20Isotopologues&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Ndengue%CC%81,%20Steve%20Alexandre&rft.date=2012-12-20&rft.volume=116&rft.issue=50&rft.spage=12271&rft.epage=12279&rft.pages=12271-12279&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp307195v&rft_dat=%3Cproquest_cross%3E1529952302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273274882&rft_id=info:pmid/23163640&rfr_iscdi=true