Simulation of an Atmospheric Residue Desulfurization Unit by Quasi-Steady State Modeling

The current trend in petroleum refining is to maximize the conversion of the bottom of the barrel to improve the profitability of the refinery. Atmospheric residue desulfurization (ARDS) plays a key role in this, especially, when processing crudes with moderate to high sulfur contents. A determinist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering & technology 1998-02, Vol.21 (2), p.193-200
Hauptverfasser: Lababidi, Haitham M. S., Shaban, Habib I., Al-Radwan, Suad, Alper, Erdogan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 200
container_issue 2
container_start_page 193
container_title Chemical engineering & technology
container_volume 21
creator Lababidi, Haitham M. S.
Shaban, Habib I.
Al-Radwan, Suad
Alper, Erdogan
description The current trend in petroleum refining is to maximize the conversion of the bottom of the barrel to improve the profitability of the refinery. Atmospheric residue desulfurization (ARDS) plays a key role in this, especially, when processing crudes with moderate to high sulfur contents. A deterministic quasi‐steady state model has been developed to simulate the long term behavior of the reaction section of an atmospheric residue desulfurization (ARDS) unit, consisting of four co‐current catalytic trickle bed reactors in series. The model uses the properties of the feedstock and the catalyst and is capable of simulating profiles of sulfur, coke, and metal depositions and the temperature along the reactors, taking into account also catalyst deactivation. Hydrogen quenching has also been simulated and simulation results predict all the essentials of the long term behavior of both experimental and industrial scale ARDS reactors satisfactorily. Comparing the simulation results with actual commercial data, the model predicted perfectly the middle part of the run. The model is unable to simulate the End‐of‐Run conditions due to pore mouth plugging phenomenon. The current trend in petroleum refining is to maximize the conversion of the bottom of the barrel to improve the profitability of the refinery. Atmospheric Residue Desulfurization (ARDS) plays a key role in this, especially, when processing crudes with moderate to high sulfur contents.
doi_str_mv 10.1002/(SICI)1521-4125(199802)21:2<193::AID-CEAT193>3.0.CO;2-T
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753492983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753492983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4533-872931dbbbcd897c46b9d4d1234ddc314725e54cddc84ba50b7234b3c8043a063</originalsourceid><addsrcrecordid>eNqFkF9v0zAUxS0EEqXwHfzAQ_eQ4r9NXBCoysZWMaggnTrt5cpxHDCkSYkTbeXT4yqlLyDxZB_f43Oufgi9o2RKCWGvJtkyXZ5RyWgkKJMTqlRC2Bmjc_aGKj6fL5bnUXqxWAfxlk_JNF29ZtH6ERqd_jxGI6I4iWJJZ0_RM--_E0JoECN0m7ltX-nONTVuSqxrvOi2jd99s60z-Iv1rugtPre-r8q-db8G503tOpzv8edeexdlndXFHmed7iz-2BS2cvXX5-hJqStvXxzPMbp5f7FOr6Lr1eUyXVxHRkjOoyRmitMiz3NTJCo2YparQhSUcVEUhlMRM2mlMEEkIteS5HEY5dwkRHBNZnyMJkPurm1-9tZ3sHXe2KrStW16DzSWXCimEh6sm8Fq2sb71pawa91Wt3ugBA6sAQ6s4cANDtxgYA1BsnDnAIE1HFkDBwLpKkzWIfnlcQntja7KVtfG-VM8o4qRsO8Y3Q22e1fZ_V_t_yn_d_efpxAeDeHOd_bhFK7bHzCLeSxh8-kSPsgNydjVLdzx30Ptrlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753492983</pqid></control><display><type>article</type><title>Simulation of an Atmospheric Residue Desulfurization Unit by Quasi-Steady State Modeling</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lababidi, Haitham M. S. ; Shaban, Habib I. ; Al-Radwan, Suad ; Alper, Erdogan</creator><creatorcontrib>Lababidi, Haitham M. S. ; Shaban, Habib I. ; Al-Radwan, Suad ; Alper, Erdogan</creatorcontrib><description>The current trend in petroleum refining is to maximize the conversion of the bottom of the barrel to improve the profitability of the refinery. Atmospheric residue desulfurization (ARDS) plays a key role in this, especially, when processing crudes with moderate to high sulfur contents. A deterministic quasi‐steady state model has been developed to simulate the long term behavior of the reaction section of an atmospheric residue desulfurization (ARDS) unit, consisting of four co‐current catalytic trickle bed reactors in series. The model uses the properties of the feedstock and the catalyst and is capable of simulating profiles of sulfur, coke, and metal depositions and the temperature along the reactors, taking into account also catalyst deactivation. Hydrogen quenching has also been simulated and simulation results predict all the essentials of the long term behavior of both experimental and industrial scale ARDS reactors satisfactorily. Comparing the simulation results with actual commercial data, the model predicted perfectly the middle part of the run. The model is unable to simulate the End‐of‐Run conditions due to pore mouth plugging phenomenon. The current trend in petroleum refining is to maximize the conversion of the bottom of the barrel to improve the profitability of the refinery. Atmospheric Residue Desulfurization (ARDS) plays a key role in this, especially, when processing crudes with moderate to high sulfur contents.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/(SICI)1521-4125(199802)21:2&lt;193::AID-CEAT193&gt;3.0.CO;2-T</identifier><identifier>CODEN: CETEER</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Applied sciences ; Atmospherics ; Catalysts ; Computer simulation ; Crude oil, natural gas and petroleum products ; Desulfurizing ; Energy ; Exact sciences and technology ; Fuels ; Mathematical models ; Petroleum refining ; Processing of crude oil and oils from shales and tar sands. Processes. Equipment. Refinery and treatment units ; Reactors ; Residues ; Sulfur</subject><ispartof>Chemical engineering &amp; technology, 1998-02, Vol.21 (2), p.193-200</ispartof><rights>1998 WILEY‐VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4533-872931dbbbcd897c46b9d4d1234ddc314725e54cddc84ba50b7234b3c8043a063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291521-4125%28199802%2921%3A2%3C193%3A%3AAID-CEAT193%3E3.0.CO%3B2-T$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291521-4125%28199802%2921%3A2%3C193%3A%3AAID-CEAT193%3E3.0.CO%3B2-T$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2192004$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lababidi, Haitham M. S.</creatorcontrib><creatorcontrib>Shaban, Habib I.</creatorcontrib><creatorcontrib>Al-Radwan, Suad</creatorcontrib><creatorcontrib>Alper, Erdogan</creatorcontrib><title>Simulation of an Atmospheric Residue Desulfurization Unit by Quasi-Steady State Modeling</title><title>Chemical engineering &amp; technology</title><addtitle>Chem. Eng. Technol</addtitle><description>The current trend in petroleum refining is to maximize the conversion of the bottom of the barrel to improve the profitability of the refinery. Atmospheric residue desulfurization (ARDS) plays a key role in this, especially, when processing crudes with moderate to high sulfur contents. A deterministic quasi‐steady state model has been developed to simulate the long term behavior of the reaction section of an atmospheric residue desulfurization (ARDS) unit, consisting of four co‐current catalytic trickle bed reactors in series. The model uses the properties of the feedstock and the catalyst and is capable of simulating profiles of sulfur, coke, and metal depositions and the temperature along the reactors, taking into account also catalyst deactivation. Hydrogen quenching has also been simulated and simulation results predict all the essentials of the long term behavior of both experimental and industrial scale ARDS reactors satisfactorily. Comparing the simulation results with actual commercial data, the model predicted perfectly the middle part of the run. The model is unable to simulate the End‐of‐Run conditions due to pore mouth plugging phenomenon. The current trend in petroleum refining is to maximize the conversion of the bottom of the barrel to improve the profitability of the refinery. Atmospheric Residue Desulfurization (ARDS) plays a key role in this, especially, when processing crudes with moderate to high sulfur contents.</description><subject>Applied sciences</subject><subject>Atmospherics</subject><subject>Catalysts</subject><subject>Computer simulation</subject><subject>Crude oil, natural gas and petroleum products</subject><subject>Desulfurizing</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Mathematical models</subject><subject>Petroleum refining</subject><subject>Processing of crude oil and oils from shales and tar sands. Processes. Equipment. Refinery and treatment units</subject><subject>Reactors</subject><subject>Residues</subject><subject>Sulfur</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkF9v0zAUxS0EEqXwHfzAQ_eQ4r9NXBCoysZWMaggnTrt5cpxHDCkSYkTbeXT4yqlLyDxZB_f43Oufgi9o2RKCWGvJtkyXZ5RyWgkKJMTqlRC2Bmjc_aGKj6fL5bnUXqxWAfxlk_JNF29ZtH6ERqd_jxGI6I4iWJJZ0_RM--_E0JoECN0m7ltX-nONTVuSqxrvOi2jd99s60z-Iv1rugtPre-r8q-db8G503tOpzv8edeexdlndXFHmed7iz-2BS2cvXX5-hJqStvXxzPMbp5f7FOr6Lr1eUyXVxHRkjOoyRmitMiz3NTJCo2YparQhSUcVEUhlMRM2mlMEEkIteS5HEY5dwkRHBNZnyMJkPurm1-9tZ3sHXe2KrStW16DzSWXCimEh6sm8Fq2sb71pawa91Wt3ugBA6sAQ6s4cANDtxgYA1BsnDnAIE1HFkDBwLpKkzWIfnlcQntja7KVtfG-VM8o4qRsO8Y3Q22e1fZ_V_t_yn_d_efpxAeDeHOd_bhFK7bHzCLeSxh8-kSPsgNydjVLdzx30Ptrlg</recordid><startdate>199802</startdate><enddate>199802</enddate><creator>Lababidi, Haitham M. S.</creator><creator>Shaban, Habib I.</creator><creator>Al-Radwan, Suad</creator><creator>Alper, Erdogan</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>199802</creationdate><title>Simulation of an Atmospheric Residue Desulfurization Unit by Quasi-Steady State Modeling</title><author>Lababidi, Haitham M. S. ; Shaban, Habib I. ; Al-Radwan, Suad ; Alper, Erdogan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4533-872931dbbbcd897c46b9d4d1234ddc314725e54cddc84ba50b7234b3c8043a063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Atmospherics</topic><topic>Catalysts</topic><topic>Computer simulation</topic><topic>Crude oil, natural gas and petroleum products</topic><topic>Desulfurizing</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Mathematical models</topic><topic>Petroleum refining</topic><topic>Processing of crude oil and oils from shales and tar sands. Processes. Equipment. Refinery and treatment units</topic><topic>Reactors</topic><topic>Residues</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lababidi, Haitham M. S.</creatorcontrib><creatorcontrib>Shaban, Habib I.</creatorcontrib><creatorcontrib>Al-Radwan, Suad</creatorcontrib><creatorcontrib>Alper, Erdogan</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lababidi, Haitham M. S.</au><au>Shaban, Habib I.</au><au>Al-Radwan, Suad</au><au>Alper, Erdogan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of an Atmospheric Residue Desulfurization Unit by Quasi-Steady State Modeling</atitle><jtitle>Chemical engineering &amp; technology</jtitle><addtitle>Chem. Eng. Technol</addtitle><date>1998-02</date><risdate>1998</risdate><volume>21</volume><issue>2</issue><spage>193</spage><epage>200</epage><pages>193-200</pages><issn>0930-7516</issn><eissn>1521-4125</eissn><coden>CETEER</coden><abstract>The current trend in petroleum refining is to maximize the conversion of the bottom of the barrel to improve the profitability of the refinery. Atmospheric residue desulfurization (ARDS) plays a key role in this, especially, when processing crudes with moderate to high sulfur contents. A deterministic quasi‐steady state model has been developed to simulate the long term behavior of the reaction section of an atmospheric residue desulfurization (ARDS) unit, consisting of four co‐current catalytic trickle bed reactors in series. The model uses the properties of the feedstock and the catalyst and is capable of simulating profiles of sulfur, coke, and metal depositions and the temperature along the reactors, taking into account also catalyst deactivation. Hydrogen quenching has also been simulated and simulation results predict all the essentials of the long term behavior of both experimental and industrial scale ARDS reactors satisfactorily. Comparing the simulation results with actual commercial data, the model predicted perfectly the middle part of the run. The model is unable to simulate the End‐of‐Run conditions due to pore mouth plugging phenomenon. The current trend in petroleum refining is to maximize the conversion of the bottom of the barrel to improve the profitability of the refinery. Atmospheric Residue Desulfurization (ARDS) plays a key role in this, especially, when processing crudes with moderate to high sulfur contents.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/(SICI)1521-4125(199802)21:2&lt;193::AID-CEAT193&gt;3.0.CO;2-T</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0930-7516
ispartof Chemical engineering & technology, 1998-02, Vol.21 (2), p.193-200
issn 0930-7516
1521-4125
language eng
recordid cdi_proquest_miscellaneous_1753492983
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Atmospherics
Catalysts
Computer simulation
Crude oil, natural gas and petroleum products
Desulfurizing
Energy
Exact sciences and technology
Fuels
Mathematical models
Petroleum refining
Processing of crude oil and oils from shales and tar sands. Processes. Equipment. Refinery and treatment units
Reactors
Residues
Sulfur
title Simulation of an Atmospheric Residue Desulfurization Unit by Quasi-Steady State Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20an%20Atmospheric%20Residue%20Desulfurization%20Unit%20by%20Quasi-Steady%20State%20Modeling&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Lababidi,%20Haitham%20M.%20S.&rft.date=1998-02&rft.volume=21&rft.issue=2&rft.spage=193&rft.epage=200&rft.pages=193-200&rft.issn=0930-7516&rft.eissn=1521-4125&rft.coden=CETEER&rft_id=info:doi/10.1002/(SICI)1521-4125(199802)21:2%3C193::AID-CEAT193%3E3.0.CO;2-T&rft_dat=%3Cproquest_cross%3E1753492983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753492983&rft_id=info:pmid/&rfr_iscdi=true