Simulation of an Atmospheric Residue Desulfurization Unit by Quasi-Steady State Modeling
The current trend in petroleum refining is to maximize the conversion of the bottom of the barrel to improve the profitability of the refinery. Atmospheric residue desulfurization (ARDS) plays a key role in this, especially, when processing crudes with moderate to high sulfur contents. A determinist...
Gespeichert in:
Veröffentlicht in: | Chemical engineering & technology 1998-02, Vol.21 (2), p.193-200 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 200 |
---|---|
container_issue | 2 |
container_start_page | 193 |
container_title | Chemical engineering & technology |
container_volume | 21 |
creator | Lababidi, Haitham M. S. Shaban, Habib I. Al-Radwan, Suad Alper, Erdogan |
description | The current trend in petroleum refining is to maximize the conversion of the bottom of the barrel to improve the profitability of the refinery. Atmospheric residue desulfurization (ARDS) plays a key role in this, especially, when processing crudes with moderate to high sulfur contents. A deterministic quasi‐steady state model has been developed to simulate the long term behavior of the reaction section of an atmospheric residue desulfurization (ARDS) unit, consisting of four co‐current catalytic trickle bed reactors in series. The model uses the properties of the feedstock and the catalyst and is capable of simulating profiles of sulfur, coke, and metal depositions and the temperature along the reactors, taking into account also catalyst deactivation. Hydrogen quenching has also been simulated and simulation results predict all the essentials of the long term behavior of both experimental and industrial scale ARDS reactors satisfactorily. Comparing the simulation results with actual commercial data, the model predicted perfectly the middle part of the run. The model is unable to simulate the End‐of‐Run conditions due to pore mouth plugging phenomenon.
The current trend in petroleum refining is to maximize the conversion of the bottom of the barrel to improve the profitability of the refinery. Atmospheric Residue Desulfurization (ARDS) plays a key role in this, especially, when processing crudes with moderate to high sulfur contents. |
doi_str_mv | 10.1002/(SICI)1521-4125(199802)21:2<193::AID-CEAT193>3.0.CO;2-T |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753492983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753492983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4533-872931dbbbcd897c46b9d4d1234ddc314725e54cddc84ba50b7234b3c8043a063</originalsourceid><addsrcrecordid>eNqFkF9v0zAUxS0EEqXwHfzAQ_eQ4r9NXBCoysZWMaggnTrt5cpxHDCkSYkTbeXT4yqlLyDxZB_f43Oufgi9o2RKCWGvJtkyXZ5RyWgkKJMTqlRC2Bmjc_aGKj6fL5bnUXqxWAfxlk_JNF29ZtH6ERqd_jxGI6I4iWJJZ0_RM--_E0JoECN0m7ltX-nONTVuSqxrvOi2jd99s60z-Iv1rugtPre-r8q-db8G503tOpzv8edeexdlndXFHmed7iz-2BS2cvXX5-hJqStvXxzPMbp5f7FOr6Lr1eUyXVxHRkjOoyRmitMiz3NTJCo2YparQhSUcVEUhlMRM2mlMEEkIteS5HEY5dwkRHBNZnyMJkPurm1-9tZ3sHXe2KrStW16DzSWXCimEh6sm8Fq2sb71pawa91Wt3ugBA6sAQ6s4cANDtxgYA1BsnDnAIE1HFkDBwLpKkzWIfnlcQntja7KVtfG-VM8o4qRsO8Y3Q22e1fZ_V_t_yn_d_efpxAeDeHOd_bhFK7bHzCLeSxh8-kSPsgNydjVLdzx30Ptrlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753492983</pqid></control><display><type>article</type><title>Simulation of an Atmospheric Residue Desulfurization Unit by Quasi-Steady State Modeling</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lababidi, Haitham M. S. ; Shaban, Habib I. ; Al-Radwan, Suad ; Alper, Erdogan</creator><creatorcontrib>Lababidi, Haitham M. S. ; Shaban, Habib I. ; Al-Radwan, Suad ; Alper, Erdogan</creatorcontrib><description>The current trend in petroleum refining is to maximize the conversion of the bottom of the barrel to improve the profitability of the refinery. Atmospheric residue desulfurization (ARDS) plays a key role in this, especially, when processing crudes with moderate to high sulfur contents. A deterministic quasi‐steady state model has been developed to simulate the long term behavior of the reaction section of an atmospheric residue desulfurization (ARDS) unit, consisting of four co‐current catalytic trickle bed reactors in series. The model uses the properties of the feedstock and the catalyst and is capable of simulating profiles of sulfur, coke, and metal depositions and the temperature along the reactors, taking into account also catalyst deactivation. Hydrogen quenching has also been simulated and simulation results predict all the essentials of the long term behavior of both experimental and industrial scale ARDS reactors satisfactorily. Comparing the simulation results with actual commercial data, the model predicted perfectly the middle part of the run. The model is unable to simulate the End‐of‐Run conditions due to pore mouth plugging phenomenon.
The current trend in petroleum refining is to maximize the conversion of the bottom of the barrel to improve the profitability of the refinery. Atmospheric Residue Desulfurization (ARDS) plays a key role in this, especially, when processing crudes with moderate to high sulfur contents.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/(SICI)1521-4125(199802)21:2<193::AID-CEAT193>3.0.CO;2-T</identifier><identifier>CODEN: CETEER</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Applied sciences ; Atmospherics ; Catalysts ; Computer simulation ; Crude oil, natural gas and petroleum products ; Desulfurizing ; Energy ; Exact sciences and technology ; Fuels ; Mathematical models ; Petroleum refining ; Processing of crude oil and oils from shales and tar sands. Processes. Equipment. Refinery and treatment units ; Reactors ; Residues ; Sulfur</subject><ispartof>Chemical engineering & technology, 1998-02, Vol.21 (2), p.193-200</ispartof><rights>1998 WILEY‐VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4533-872931dbbbcd897c46b9d4d1234ddc314725e54cddc84ba50b7234b3c8043a063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291521-4125%28199802%2921%3A2%3C193%3A%3AAID-CEAT193%3E3.0.CO%3B2-T$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291521-4125%28199802%2921%3A2%3C193%3A%3AAID-CEAT193%3E3.0.CO%3B2-T$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2192004$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lababidi, Haitham M. S.</creatorcontrib><creatorcontrib>Shaban, Habib I.</creatorcontrib><creatorcontrib>Al-Radwan, Suad</creatorcontrib><creatorcontrib>Alper, Erdogan</creatorcontrib><title>Simulation of an Atmospheric Residue Desulfurization Unit by Quasi-Steady State Modeling</title><title>Chemical engineering & technology</title><addtitle>Chem. Eng. Technol</addtitle><description>The current trend in petroleum refining is to maximize the conversion of the bottom of the barrel to improve the profitability of the refinery. Atmospheric residue desulfurization (ARDS) plays a key role in this, especially, when processing crudes with moderate to high sulfur contents. A deterministic quasi‐steady state model has been developed to simulate the long term behavior of the reaction section of an atmospheric residue desulfurization (ARDS) unit, consisting of four co‐current catalytic trickle bed reactors in series. The model uses the properties of the feedstock and the catalyst and is capable of simulating profiles of sulfur, coke, and metal depositions and the temperature along the reactors, taking into account also catalyst deactivation. Hydrogen quenching has also been simulated and simulation results predict all the essentials of the long term behavior of both experimental and industrial scale ARDS reactors satisfactorily. Comparing the simulation results with actual commercial data, the model predicted perfectly the middle part of the run. The model is unable to simulate the End‐of‐Run conditions due to pore mouth plugging phenomenon.
The current trend in petroleum refining is to maximize the conversion of the bottom of the barrel to improve the profitability of the refinery. Atmospheric Residue Desulfurization (ARDS) plays a key role in this, especially, when processing crudes with moderate to high sulfur contents.</description><subject>Applied sciences</subject><subject>Atmospherics</subject><subject>Catalysts</subject><subject>Computer simulation</subject><subject>Crude oil, natural gas and petroleum products</subject><subject>Desulfurizing</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Mathematical models</subject><subject>Petroleum refining</subject><subject>Processing of crude oil and oils from shales and tar sands. Processes. Equipment. Refinery and treatment units</subject><subject>Reactors</subject><subject>Residues</subject><subject>Sulfur</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkF9v0zAUxS0EEqXwHfzAQ_eQ4r9NXBCoysZWMaggnTrt5cpxHDCkSYkTbeXT4yqlLyDxZB_f43Oufgi9o2RKCWGvJtkyXZ5RyWgkKJMTqlRC2Bmjc_aGKj6fL5bnUXqxWAfxlk_JNF29ZtH6ERqd_jxGI6I4iWJJZ0_RM--_E0JoECN0m7ltX-nONTVuSqxrvOi2jd99s60z-Iv1rugtPre-r8q-db8G503tOpzv8edeexdlndXFHmed7iz-2BS2cvXX5-hJqStvXxzPMbp5f7FOr6Lr1eUyXVxHRkjOoyRmitMiz3NTJCo2YparQhSUcVEUhlMRM2mlMEEkIteS5HEY5dwkRHBNZnyMJkPurm1-9tZ3sHXe2KrStW16DzSWXCimEh6sm8Fq2sb71pawa91Wt3ugBA6sAQ6s4cANDtxgYA1BsnDnAIE1HFkDBwLpKkzWIfnlcQntja7KVtfG-VM8o4qRsO8Y3Q22e1fZ_V_t_yn_d_efpxAeDeHOd_bhFK7bHzCLeSxh8-kSPsgNydjVLdzx30Ptrlg</recordid><startdate>199802</startdate><enddate>199802</enddate><creator>Lababidi, Haitham M. S.</creator><creator>Shaban, Habib I.</creator><creator>Al-Radwan, Suad</creator><creator>Alper, Erdogan</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>199802</creationdate><title>Simulation of an Atmospheric Residue Desulfurization Unit by Quasi-Steady State Modeling</title><author>Lababidi, Haitham M. S. ; Shaban, Habib I. ; Al-Radwan, Suad ; Alper, Erdogan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4533-872931dbbbcd897c46b9d4d1234ddc314725e54cddc84ba50b7234b3c8043a063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Atmospherics</topic><topic>Catalysts</topic><topic>Computer simulation</topic><topic>Crude oil, natural gas and petroleum products</topic><topic>Desulfurizing</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Mathematical models</topic><topic>Petroleum refining</topic><topic>Processing of crude oil and oils from shales and tar sands. Processes. Equipment. Refinery and treatment units</topic><topic>Reactors</topic><topic>Residues</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lababidi, Haitham M. S.</creatorcontrib><creatorcontrib>Shaban, Habib I.</creatorcontrib><creatorcontrib>Al-Radwan, Suad</creatorcontrib><creatorcontrib>Alper, Erdogan</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lababidi, Haitham M. S.</au><au>Shaban, Habib I.</au><au>Al-Radwan, Suad</au><au>Alper, Erdogan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of an Atmospheric Residue Desulfurization Unit by Quasi-Steady State Modeling</atitle><jtitle>Chemical engineering & technology</jtitle><addtitle>Chem. Eng. Technol</addtitle><date>1998-02</date><risdate>1998</risdate><volume>21</volume><issue>2</issue><spage>193</spage><epage>200</epage><pages>193-200</pages><issn>0930-7516</issn><eissn>1521-4125</eissn><coden>CETEER</coden><abstract>The current trend in petroleum refining is to maximize the conversion of the bottom of the barrel to improve the profitability of the refinery. Atmospheric residue desulfurization (ARDS) plays a key role in this, especially, when processing crudes with moderate to high sulfur contents. A deterministic quasi‐steady state model has been developed to simulate the long term behavior of the reaction section of an atmospheric residue desulfurization (ARDS) unit, consisting of four co‐current catalytic trickle bed reactors in series. The model uses the properties of the feedstock and the catalyst and is capable of simulating profiles of sulfur, coke, and metal depositions and the temperature along the reactors, taking into account also catalyst deactivation. Hydrogen quenching has also been simulated and simulation results predict all the essentials of the long term behavior of both experimental and industrial scale ARDS reactors satisfactorily. Comparing the simulation results with actual commercial data, the model predicted perfectly the middle part of the run. The model is unable to simulate the End‐of‐Run conditions due to pore mouth plugging phenomenon.
The current trend in petroleum refining is to maximize the conversion of the bottom of the barrel to improve the profitability of the refinery. Atmospheric Residue Desulfurization (ARDS) plays a key role in this, especially, when processing crudes with moderate to high sulfur contents.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/(SICI)1521-4125(199802)21:2<193::AID-CEAT193>3.0.CO;2-T</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7516 |
ispartof | Chemical engineering & technology, 1998-02, Vol.21 (2), p.193-200 |
issn | 0930-7516 1521-4125 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753492983 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Atmospherics Catalysts Computer simulation Crude oil, natural gas and petroleum products Desulfurizing Energy Exact sciences and technology Fuels Mathematical models Petroleum refining Processing of crude oil and oils from shales and tar sands. Processes. Equipment. Refinery and treatment units Reactors Residues Sulfur |
title | Simulation of an Atmospheric Residue Desulfurization Unit by Quasi-Steady State Modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20an%20Atmospheric%20Residue%20Desulfurization%20Unit%20by%20Quasi-Steady%20State%20Modeling&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Lababidi,%20Haitham%20M.%20S.&rft.date=1998-02&rft.volume=21&rft.issue=2&rft.spage=193&rft.epage=200&rft.pages=193-200&rft.issn=0930-7516&rft.eissn=1521-4125&rft.coden=CETEER&rft_id=info:doi/10.1002/(SICI)1521-4125(199802)21:2%3C193::AID-CEAT193%3E3.0.CO;2-T&rft_dat=%3Cproquest_cross%3E1753492983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753492983&rft_id=info:pmid/&rfr_iscdi=true |