Geometrical Correction for the Inter- and Intramolecular Basis Set Superposition Error in Periodic Density Functional Theory Calculations

We extend the previously developed geometrical correction for the inter- and intramolecular basis set superposition error (gCP) to periodic density functional theory (DFT) calculations. We report gCP results compared to those from the standard Boys–Bernardi counterpoise correction scheme and large b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2013-09, Vol.117 (38), p.9282-9292
Hauptverfasser: Brandenburg, Jan Gerit, Alessio, Maristella, Civalleri, Bartolomeo, Peintinger, Michael F, Bredow, Thomas, Grimme, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9292
container_issue 38
container_start_page 9282
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 117
creator Brandenburg, Jan Gerit
Alessio, Maristella
Civalleri, Bartolomeo
Peintinger, Michael F
Bredow, Thomas
Grimme, Stefan
description We extend the previously developed geometrical correction for the inter- and intramolecular basis set superposition error (gCP) to periodic density functional theory (DFT) calculations. We report gCP results compared to those from the standard Boys–Bernardi counterpoise correction scheme and large basis set calculations. The applicability of the method to molecular crystals as the main target is tested for the benchmark set X23. It consists of 23 noncovalently bound crystals as introduced by Johnson et al. ( J. Chem. Phys. 2012, 137, 054103 ) and refined by Tkatchenko et al. ( J. Chem. Phys. 2013, 139, 024705 ). In order to accurately describe long-range electron correlation effects, we use the standard atom-pairwise dispersion correction scheme DFT-D3. We show that a combination of DFT energies with small atom-centered basis sets, the D3 dispersion correction, and the gCP correction can accurately describe van der Waals and hydrogen-bonded crystals. Mean absolute deviations of the X23 sublimation energies can be reduced by more than 70% and 80% for the standard functionals PBE and B3LYP, respectively, to small residual mean absolute deviations of about 2 kcal/mol (corresponding to 13% of the average sublimation energy). As a further test, we compute the interlayer interaction of graphite for varying distances and obtain a good equilibrium distance and interaction energy of 6.75 Å and −43.0 meV/atom at the PBE-D3-gCP/SVP level. We fit the gCP scheme for a recently developed pob-TZVP solid-state basis set and obtain reasonable results for the X23 benchmark set and the potential energy curve for water adsorption on a nickel (110) surface.
doi_str_mv 10.1021/jp406658y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753492306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753492306</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-7adec02be70b38e1c23ad02230dd35eb9cfc1c9c9f9ba1d349429077e509b8e53</originalsourceid><addsrcrecordid>eNqFkctO3DAUhq2qqFzaRV-g8qYSLEJ9HcdLGK4SEpWg68hxToRHSZweJ4t5BN4aDwywQWLlI_v7vyP5J-QnZ8ecCf5nNSq2WOhy_YXscS1YoQXXX_PMSlvohbS7ZD-lFWOMS6G-kV0hrTKlUHvk8RJiDxMG7zq6jIjgpxAH2kak0wPQ62ECLKgbms2Iro8d-LlzSE9dConewUTv5hFwjCk8J88RczYM9C9giE3w9AyG_LamF_PwLM-b7h8g4pouXbeRbS7Td7LTui7Bj-15QP5dnN8vr4qb28vr5clN4ZSxU2FcA56JGgyrZQncC-kaJoRkTSM11Na3nnvrbWtrxxuprBKWGQOa2boELQ_I4Yt3xPh_hjRVfUgeus4NEOdUcaNzKPsWn6NKGm0yqzJ69IJ6jCkhtNWIoXe4rjirNiVVbyVl9tdWO9c9NG_kaysZ-L0FXMq9tOgGH9I7Z0ypuBLvnPOpWsUZ89emDxY-ARnBp7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437579234</pqid></control><display><type>article</type><title>Geometrical Correction for the Inter- and Intramolecular Basis Set Superposition Error in Periodic Density Functional Theory Calculations</title><source>American Chemical Society Journals</source><creator>Brandenburg, Jan Gerit ; Alessio, Maristella ; Civalleri, Bartolomeo ; Peintinger, Michael F ; Bredow, Thomas ; Grimme, Stefan</creator><creatorcontrib>Brandenburg, Jan Gerit ; Alessio, Maristella ; Civalleri, Bartolomeo ; Peintinger, Michael F ; Bredow, Thomas ; Grimme, Stefan</creatorcontrib><description>We extend the previously developed geometrical correction for the inter- and intramolecular basis set superposition error (gCP) to periodic density functional theory (DFT) calculations. We report gCP results compared to those from the standard Boys–Bernardi counterpoise correction scheme and large basis set calculations. The applicability of the method to molecular crystals as the main target is tested for the benchmark set X23. It consists of 23 noncovalently bound crystals as introduced by Johnson et al. ( J. Chem. Phys. 2012, 137, 054103 ) and refined by Tkatchenko et al. ( J. Chem. Phys. 2013, 139, 024705 ). In order to accurately describe long-range electron correlation effects, we use the standard atom-pairwise dispersion correction scheme DFT-D3. We show that a combination of DFT energies with small atom-centered basis sets, the D3 dispersion correction, and the gCP correction can accurately describe van der Waals and hydrogen-bonded crystals. Mean absolute deviations of the X23 sublimation energies can be reduced by more than 70% and 80% for the standard functionals PBE and B3LYP, respectively, to small residual mean absolute deviations of about 2 kcal/mol (corresponding to 13% of the average sublimation energy). As a further test, we compute the interlayer interaction of graphite for varying distances and obtain a good equilibrium distance and interaction energy of 6.75 Å and −43.0 meV/atom at the PBE-D3-gCP/SVP level. We fit the gCP scheme for a recently developed pob-TZVP solid-state basis set and obtain reasonable results for the X23 benchmark set and the potential energy curve for water adsorption on a nickel (110) surface.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp406658y</identifier><identifier>PMID: 23947824</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Atomic and molecular physics ; Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations) ; Crystals ; Density functional theory ; Deviation ; Dispersions ; Effects of atomic and molecular interactions on electronic structure ; Electronic structure of atoms, molecules and their ions: theory ; Error correction ; Exact sciences and technology ; Mathematical analysis ; Molecular solids ; Physics ; Surface chemistry</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2013-09, Vol.117 (38), p.9282-9292</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-7adec02be70b38e1c23ad02230dd35eb9cfc1c9c9f9ba1d349429077e509b8e53</citedby><cites>FETCH-LOGICAL-a479t-7adec02be70b38e1c23ad02230dd35eb9cfc1c9c9f9ba1d349429077e509b8e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp406658y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp406658y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27784142$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23947824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brandenburg, Jan Gerit</creatorcontrib><creatorcontrib>Alessio, Maristella</creatorcontrib><creatorcontrib>Civalleri, Bartolomeo</creatorcontrib><creatorcontrib>Peintinger, Michael F</creatorcontrib><creatorcontrib>Bredow, Thomas</creatorcontrib><creatorcontrib>Grimme, Stefan</creatorcontrib><title>Geometrical Correction for the Inter- and Intramolecular Basis Set Superposition Error in Periodic Density Functional Theory Calculations</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>We extend the previously developed geometrical correction for the inter- and intramolecular basis set superposition error (gCP) to periodic density functional theory (DFT) calculations. We report gCP results compared to those from the standard Boys–Bernardi counterpoise correction scheme and large basis set calculations. The applicability of the method to molecular crystals as the main target is tested for the benchmark set X23. It consists of 23 noncovalently bound crystals as introduced by Johnson et al. ( J. Chem. Phys. 2012, 137, 054103 ) and refined by Tkatchenko et al. ( J. Chem. Phys. 2013, 139, 024705 ). In order to accurately describe long-range electron correlation effects, we use the standard atom-pairwise dispersion correction scheme DFT-D3. We show that a combination of DFT energies with small atom-centered basis sets, the D3 dispersion correction, and the gCP correction can accurately describe van der Waals and hydrogen-bonded crystals. Mean absolute deviations of the X23 sublimation energies can be reduced by more than 70% and 80% for the standard functionals PBE and B3LYP, respectively, to small residual mean absolute deviations of about 2 kcal/mol (corresponding to 13% of the average sublimation energy). As a further test, we compute the interlayer interaction of graphite for varying distances and obtain a good equilibrium distance and interaction energy of 6.75 Å and −43.0 meV/atom at the PBE-D3-gCP/SVP level. We fit the gCP scheme for a recently developed pob-TZVP solid-state basis set and obtain reasonable results for the X23 benchmark set and the potential energy curve for water adsorption on a nickel (110) surface.</description><subject>Atomic and molecular physics</subject><subject>Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)</subject><subject>Crystals</subject><subject>Density functional theory</subject><subject>Deviation</subject><subject>Dispersions</subject><subject>Effects of atomic and molecular interactions on electronic structure</subject><subject>Electronic structure of atoms, molecules and their ions: theory</subject><subject>Error correction</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Molecular solids</subject><subject>Physics</subject><subject>Surface chemistry</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkctO3DAUhq2qqFzaRV-g8qYSLEJ9HcdLGK4SEpWg68hxToRHSZweJ4t5BN4aDwywQWLlI_v7vyP5J-QnZ8ecCf5nNSq2WOhy_YXscS1YoQXXX_PMSlvohbS7ZD-lFWOMS6G-kV0hrTKlUHvk8RJiDxMG7zq6jIjgpxAH2kak0wPQ62ECLKgbms2Iro8d-LlzSE9dConewUTv5hFwjCk8J88RczYM9C9giE3w9AyG_LamF_PwLM-b7h8g4pouXbeRbS7Td7LTui7Bj-15QP5dnN8vr4qb28vr5clN4ZSxU2FcA56JGgyrZQncC-kaJoRkTSM11Na3nnvrbWtrxxuprBKWGQOa2boELQ_I4Yt3xPh_hjRVfUgeus4NEOdUcaNzKPsWn6NKGm0yqzJ69IJ6jCkhtNWIoXe4rjirNiVVbyVl9tdWO9c9NG_kaysZ-L0FXMq9tOgGH9I7Z0ypuBLvnPOpWsUZ89emDxY-ARnBp7s</recordid><startdate>20130926</startdate><enddate>20130926</enddate><creator>Brandenburg, Jan Gerit</creator><creator>Alessio, Maristella</creator><creator>Civalleri, Bartolomeo</creator><creator>Peintinger, Michael F</creator><creator>Bredow, Thomas</creator><creator>Grimme, Stefan</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130926</creationdate><title>Geometrical Correction for the Inter- and Intramolecular Basis Set Superposition Error in Periodic Density Functional Theory Calculations</title><author>Brandenburg, Jan Gerit ; Alessio, Maristella ; Civalleri, Bartolomeo ; Peintinger, Michael F ; Bredow, Thomas ; Grimme, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-7adec02be70b38e1c23ad02230dd35eb9cfc1c9c9f9ba1d349429077e509b8e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atomic and molecular physics</topic><topic>Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)</topic><topic>Crystals</topic><topic>Density functional theory</topic><topic>Deviation</topic><topic>Dispersions</topic><topic>Effects of atomic and molecular interactions on electronic structure</topic><topic>Electronic structure of atoms, molecules and their ions: theory</topic><topic>Error correction</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Molecular solids</topic><topic>Physics</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brandenburg, Jan Gerit</creatorcontrib><creatorcontrib>Alessio, Maristella</creatorcontrib><creatorcontrib>Civalleri, Bartolomeo</creatorcontrib><creatorcontrib>Peintinger, Michael F</creatorcontrib><creatorcontrib>Bredow, Thomas</creatorcontrib><creatorcontrib>Grimme, Stefan</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brandenburg, Jan Gerit</au><au>Alessio, Maristella</au><au>Civalleri, Bartolomeo</au><au>Peintinger, Michael F</au><au>Bredow, Thomas</au><au>Grimme, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrical Correction for the Inter- and Intramolecular Basis Set Superposition Error in Periodic Density Functional Theory Calculations</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2013-09-26</date><risdate>2013</risdate><volume>117</volume><issue>38</issue><spage>9282</spage><epage>9292</epage><pages>9282-9292</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>We extend the previously developed geometrical correction for the inter- and intramolecular basis set superposition error (gCP) to periodic density functional theory (DFT) calculations. We report gCP results compared to those from the standard Boys–Bernardi counterpoise correction scheme and large basis set calculations. The applicability of the method to molecular crystals as the main target is tested for the benchmark set X23. It consists of 23 noncovalently bound crystals as introduced by Johnson et al. ( J. Chem. Phys. 2012, 137, 054103 ) and refined by Tkatchenko et al. ( J. Chem. Phys. 2013, 139, 024705 ). In order to accurately describe long-range electron correlation effects, we use the standard atom-pairwise dispersion correction scheme DFT-D3. We show that a combination of DFT energies with small atom-centered basis sets, the D3 dispersion correction, and the gCP correction can accurately describe van der Waals and hydrogen-bonded crystals. Mean absolute deviations of the X23 sublimation energies can be reduced by more than 70% and 80% for the standard functionals PBE and B3LYP, respectively, to small residual mean absolute deviations of about 2 kcal/mol (corresponding to 13% of the average sublimation energy). As a further test, we compute the interlayer interaction of graphite for varying distances and obtain a good equilibrium distance and interaction energy of 6.75 Å and −43.0 meV/atom at the PBE-D3-gCP/SVP level. We fit the gCP scheme for a recently developed pob-TZVP solid-state basis set and obtain reasonable results for the X23 benchmark set and the potential energy curve for water adsorption on a nickel (110) surface.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23947824</pmid><doi>10.1021/jp406658y</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2013-09, Vol.117 (38), p.9282-9292
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_1753492306
source American Chemical Society Journals
subjects Atomic and molecular physics
Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)
Crystals
Density functional theory
Deviation
Dispersions
Effects of atomic and molecular interactions on electronic structure
Electronic structure of atoms, molecules and their ions: theory
Error correction
Exact sciences and technology
Mathematical analysis
Molecular solids
Physics
Surface chemistry
title Geometrical Correction for the Inter- and Intramolecular Basis Set Superposition Error in Periodic Density Functional Theory Calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrical%20Correction%20for%20the%20Inter-%20and%20Intramolecular%20Basis%20Set%20Superposition%20Error%20in%20Periodic%20Density%20Functional%20Theory%20Calculations&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Brandenburg,%20Jan%20Gerit&rft.date=2013-09-26&rft.volume=117&rft.issue=38&rft.spage=9282&rft.epage=9292&rft.pages=9282-9292&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp406658y&rft_dat=%3Cproquest_cross%3E1753492306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437579234&rft_id=info:pmid/23947824&rfr_iscdi=true