Geometrical Correction for the Inter- and Intramolecular Basis Set Superposition Error in Periodic Density Functional Theory Calculations
We extend the previously developed geometrical correction for the inter- and intramolecular basis set superposition error (gCP) to periodic density functional theory (DFT) calculations. We report gCP results compared to those from the standard Boys–Bernardi counterpoise correction scheme and large b...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2013-09, Vol.117 (38), p.9282-9292 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9292 |
---|---|
container_issue | 38 |
container_start_page | 9282 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 117 |
creator | Brandenburg, Jan Gerit Alessio, Maristella Civalleri, Bartolomeo Peintinger, Michael F Bredow, Thomas Grimme, Stefan |
description | We extend the previously developed geometrical correction for the inter- and intramolecular basis set superposition error (gCP) to periodic density functional theory (DFT) calculations. We report gCP results compared to those from the standard Boys–Bernardi counterpoise correction scheme and large basis set calculations. The applicability of the method to molecular crystals as the main target is tested for the benchmark set X23. It consists of 23 noncovalently bound crystals as introduced by Johnson et al. ( J. Chem. Phys. 2012, 137, 054103 ) and refined by Tkatchenko et al. ( J. Chem. Phys. 2013, 139, 024705 ). In order to accurately describe long-range electron correlation effects, we use the standard atom-pairwise dispersion correction scheme DFT-D3. We show that a combination of DFT energies with small atom-centered basis sets, the D3 dispersion correction, and the gCP correction can accurately describe van der Waals and hydrogen-bonded crystals. Mean absolute deviations of the X23 sublimation energies can be reduced by more than 70% and 80% for the standard functionals PBE and B3LYP, respectively, to small residual mean absolute deviations of about 2 kcal/mol (corresponding to 13% of the average sublimation energy). As a further test, we compute the interlayer interaction of graphite for varying distances and obtain a good equilibrium distance and interaction energy of 6.75 Å and −43.0 meV/atom at the PBE-D3-gCP/SVP level. We fit the gCP scheme for a recently developed pob-TZVP solid-state basis set and obtain reasonable results for the X23 benchmark set and the potential energy curve for water adsorption on a nickel (110) surface. |
doi_str_mv | 10.1021/jp406658y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753492306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753492306</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-7adec02be70b38e1c23ad02230dd35eb9cfc1c9c9f9ba1d349429077e509b8e53</originalsourceid><addsrcrecordid>eNqFkctO3DAUhq2qqFzaRV-g8qYSLEJ9HcdLGK4SEpWg68hxToRHSZweJ4t5BN4aDwywQWLlI_v7vyP5J-QnZ8ecCf5nNSq2WOhy_YXscS1YoQXXX_PMSlvohbS7ZD-lFWOMS6G-kV0hrTKlUHvk8RJiDxMG7zq6jIjgpxAH2kak0wPQ62ECLKgbms2Iro8d-LlzSE9dConewUTv5hFwjCk8J88RczYM9C9giE3w9AyG_LamF_PwLM-b7h8g4pouXbeRbS7Td7LTui7Bj-15QP5dnN8vr4qb28vr5clN4ZSxU2FcA56JGgyrZQncC-kaJoRkTSM11Na3nnvrbWtrxxuprBKWGQOa2boELQ_I4Yt3xPh_hjRVfUgeus4NEOdUcaNzKPsWn6NKGm0yqzJ69IJ6jCkhtNWIoXe4rjirNiVVbyVl9tdWO9c9NG_kaysZ-L0FXMq9tOgGH9I7Z0ypuBLvnPOpWsUZ89emDxY-ARnBp7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437579234</pqid></control><display><type>article</type><title>Geometrical Correction for the Inter- and Intramolecular Basis Set Superposition Error in Periodic Density Functional Theory Calculations</title><source>American Chemical Society Journals</source><creator>Brandenburg, Jan Gerit ; Alessio, Maristella ; Civalleri, Bartolomeo ; Peintinger, Michael F ; Bredow, Thomas ; Grimme, Stefan</creator><creatorcontrib>Brandenburg, Jan Gerit ; Alessio, Maristella ; Civalleri, Bartolomeo ; Peintinger, Michael F ; Bredow, Thomas ; Grimme, Stefan</creatorcontrib><description>We extend the previously developed geometrical correction for the inter- and intramolecular basis set superposition error (gCP) to periodic density functional theory (DFT) calculations. We report gCP results compared to those from the standard Boys–Bernardi counterpoise correction scheme and large basis set calculations. The applicability of the method to molecular crystals as the main target is tested for the benchmark set X23. It consists of 23 noncovalently bound crystals as introduced by Johnson et al. ( J. Chem. Phys. 2012, 137, 054103 ) and refined by Tkatchenko et al. ( J. Chem. Phys. 2013, 139, 024705 ). In order to accurately describe long-range electron correlation effects, we use the standard atom-pairwise dispersion correction scheme DFT-D3. We show that a combination of DFT energies with small atom-centered basis sets, the D3 dispersion correction, and the gCP correction can accurately describe van der Waals and hydrogen-bonded crystals. Mean absolute deviations of the X23 sublimation energies can be reduced by more than 70% and 80% for the standard functionals PBE and B3LYP, respectively, to small residual mean absolute deviations of about 2 kcal/mol (corresponding to 13% of the average sublimation energy). As a further test, we compute the interlayer interaction of graphite for varying distances and obtain a good equilibrium distance and interaction energy of 6.75 Å and −43.0 meV/atom at the PBE-D3-gCP/SVP level. We fit the gCP scheme for a recently developed pob-TZVP solid-state basis set and obtain reasonable results for the X23 benchmark set and the potential energy curve for water adsorption on a nickel (110) surface.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp406658y</identifier><identifier>PMID: 23947824</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Atomic and molecular physics ; Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations) ; Crystals ; Density functional theory ; Deviation ; Dispersions ; Effects of atomic and molecular interactions on electronic structure ; Electronic structure of atoms, molecules and their ions: theory ; Error correction ; Exact sciences and technology ; Mathematical analysis ; Molecular solids ; Physics ; Surface chemistry</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2013-09, Vol.117 (38), p.9282-9292</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-7adec02be70b38e1c23ad02230dd35eb9cfc1c9c9f9ba1d349429077e509b8e53</citedby><cites>FETCH-LOGICAL-a479t-7adec02be70b38e1c23ad02230dd35eb9cfc1c9c9f9ba1d349429077e509b8e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp406658y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp406658y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27784142$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23947824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brandenburg, Jan Gerit</creatorcontrib><creatorcontrib>Alessio, Maristella</creatorcontrib><creatorcontrib>Civalleri, Bartolomeo</creatorcontrib><creatorcontrib>Peintinger, Michael F</creatorcontrib><creatorcontrib>Bredow, Thomas</creatorcontrib><creatorcontrib>Grimme, Stefan</creatorcontrib><title>Geometrical Correction for the Inter- and Intramolecular Basis Set Superposition Error in Periodic Density Functional Theory Calculations</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>We extend the previously developed geometrical correction for the inter- and intramolecular basis set superposition error (gCP) to periodic density functional theory (DFT) calculations. We report gCP results compared to those from the standard Boys–Bernardi counterpoise correction scheme and large basis set calculations. The applicability of the method to molecular crystals as the main target is tested for the benchmark set X23. It consists of 23 noncovalently bound crystals as introduced by Johnson et al. ( J. Chem. Phys. 2012, 137, 054103 ) and refined by Tkatchenko et al. ( J. Chem. Phys. 2013, 139, 024705 ). In order to accurately describe long-range electron correlation effects, we use the standard atom-pairwise dispersion correction scheme DFT-D3. We show that a combination of DFT energies with small atom-centered basis sets, the D3 dispersion correction, and the gCP correction can accurately describe van der Waals and hydrogen-bonded crystals. Mean absolute deviations of the X23 sublimation energies can be reduced by more than 70% and 80% for the standard functionals PBE and B3LYP, respectively, to small residual mean absolute deviations of about 2 kcal/mol (corresponding to 13% of the average sublimation energy). As a further test, we compute the interlayer interaction of graphite for varying distances and obtain a good equilibrium distance and interaction energy of 6.75 Å and −43.0 meV/atom at the PBE-D3-gCP/SVP level. We fit the gCP scheme for a recently developed pob-TZVP solid-state basis set and obtain reasonable results for the X23 benchmark set and the potential energy curve for water adsorption on a nickel (110) surface.</description><subject>Atomic and molecular physics</subject><subject>Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)</subject><subject>Crystals</subject><subject>Density functional theory</subject><subject>Deviation</subject><subject>Dispersions</subject><subject>Effects of atomic and molecular interactions on electronic structure</subject><subject>Electronic structure of atoms, molecules and their ions: theory</subject><subject>Error correction</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Molecular solids</subject><subject>Physics</subject><subject>Surface chemistry</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkctO3DAUhq2qqFzaRV-g8qYSLEJ9HcdLGK4SEpWg68hxToRHSZweJ4t5BN4aDwywQWLlI_v7vyP5J-QnZ8ecCf5nNSq2WOhy_YXscS1YoQXXX_PMSlvohbS7ZD-lFWOMS6G-kV0hrTKlUHvk8RJiDxMG7zq6jIjgpxAH2kak0wPQ62ECLKgbms2Iro8d-LlzSE9dConewUTv5hFwjCk8J88RczYM9C9giE3w9AyG_LamF_PwLM-b7h8g4pouXbeRbS7Td7LTui7Bj-15QP5dnN8vr4qb28vr5clN4ZSxU2FcA56JGgyrZQncC-kaJoRkTSM11Na3nnvrbWtrxxuprBKWGQOa2boELQ_I4Yt3xPh_hjRVfUgeus4NEOdUcaNzKPsWn6NKGm0yqzJ69IJ6jCkhtNWIoXe4rjirNiVVbyVl9tdWO9c9NG_kaysZ-L0FXMq9tOgGH9I7Z0ypuBLvnPOpWsUZ89emDxY-ARnBp7s</recordid><startdate>20130926</startdate><enddate>20130926</enddate><creator>Brandenburg, Jan Gerit</creator><creator>Alessio, Maristella</creator><creator>Civalleri, Bartolomeo</creator><creator>Peintinger, Michael F</creator><creator>Bredow, Thomas</creator><creator>Grimme, Stefan</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130926</creationdate><title>Geometrical Correction for the Inter- and Intramolecular Basis Set Superposition Error in Periodic Density Functional Theory Calculations</title><author>Brandenburg, Jan Gerit ; Alessio, Maristella ; Civalleri, Bartolomeo ; Peintinger, Michael F ; Bredow, Thomas ; Grimme, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-7adec02be70b38e1c23ad02230dd35eb9cfc1c9c9f9ba1d349429077e509b8e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atomic and molecular physics</topic><topic>Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)</topic><topic>Crystals</topic><topic>Density functional theory</topic><topic>Deviation</topic><topic>Dispersions</topic><topic>Effects of atomic and molecular interactions on electronic structure</topic><topic>Electronic structure of atoms, molecules and their ions: theory</topic><topic>Error correction</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Molecular solids</topic><topic>Physics</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brandenburg, Jan Gerit</creatorcontrib><creatorcontrib>Alessio, Maristella</creatorcontrib><creatorcontrib>Civalleri, Bartolomeo</creatorcontrib><creatorcontrib>Peintinger, Michael F</creatorcontrib><creatorcontrib>Bredow, Thomas</creatorcontrib><creatorcontrib>Grimme, Stefan</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brandenburg, Jan Gerit</au><au>Alessio, Maristella</au><au>Civalleri, Bartolomeo</au><au>Peintinger, Michael F</au><au>Bredow, Thomas</au><au>Grimme, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrical Correction for the Inter- and Intramolecular Basis Set Superposition Error in Periodic Density Functional Theory Calculations</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2013-09-26</date><risdate>2013</risdate><volume>117</volume><issue>38</issue><spage>9282</spage><epage>9292</epage><pages>9282-9292</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>We extend the previously developed geometrical correction for the inter- and intramolecular basis set superposition error (gCP) to periodic density functional theory (DFT) calculations. We report gCP results compared to those from the standard Boys–Bernardi counterpoise correction scheme and large basis set calculations. The applicability of the method to molecular crystals as the main target is tested for the benchmark set X23. It consists of 23 noncovalently bound crystals as introduced by Johnson et al. ( J. Chem. Phys. 2012, 137, 054103 ) and refined by Tkatchenko et al. ( J. Chem. Phys. 2013, 139, 024705 ). In order to accurately describe long-range electron correlation effects, we use the standard atom-pairwise dispersion correction scheme DFT-D3. We show that a combination of DFT energies with small atom-centered basis sets, the D3 dispersion correction, and the gCP correction can accurately describe van der Waals and hydrogen-bonded crystals. Mean absolute deviations of the X23 sublimation energies can be reduced by more than 70% and 80% for the standard functionals PBE and B3LYP, respectively, to small residual mean absolute deviations of about 2 kcal/mol (corresponding to 13% of the average sublimation energy). As a further test, we compute the interlayer interaction of graphite for varying distances and obtain a good equilibrium distance and interaction energy of 6.75 Å and −43.0 meV/atom at the PBE-D3-gCP/SVP level. We fit the gCP scheme for a recently developed pob-TZVP solid-state basis set and obtain reasonable results for the X23 benchmark set and the potential energy curve for water adsorption on a nickel (110) surface.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23947824</pmid><doi>10.1021/jp406658y</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2013-09, Vol.117 (38), p.9282-9292 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753492306 |
source | American Chemical Society Journals |
subjects | Atomic and molecular physics Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations) Crystals Density functional theory Deviation Dispersions Effects of atomic and molecular interactions on electronic structure Electronic structure of atoms, molecules and their ions: theory Error correction Exact sciences and technology Mathematical analysis Molecular solids Physics Surface chemistry |
title | Geometrical Correction for the Inter- and Intramolecular Basis Set Superposition Error in Periodic Density Functional Theory Calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrical%20Correction%20for%20the%20Inter-%20and%20Intramolecular%20Basis%20Set%20Superposition%20Error%20in%20Periodic%20Density%20Functional%20Theory%20Calculations&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Brandenburg,%20Jan%20Gerit&rft.date=2013-09-26&rft.volume=117&rft.issue=38&rft.spage=9282&rft.epage=9292&rft.pages=9282-9292&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp406658y&rft_dat=%3Cproquest_cross%3E1753492306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437579234&rft_id=info:pmid/23947824&rfr_iscdi=true |