Karhunen–Loève’s truncation error for bivariate functions
Karhunen–Loève decompositions (KLD) or equivalently Proper Orthogonal Decompositions (POD) of bivariate functions are revisited in this work. We investigate the truncation error first for regular functions trying to improve and sharpen bounds found in Griebel and Harbrecht (2014). But, it happens th...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2015-06, Vol.290, p.57-72 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | |
container_start_page | 57 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 290 |
creator | Azaïez, M. Ben Belgacem, F. |
description | Karhunen–Loève decompositions (KLD) or equivalently Proper Orthogonal Decompositions (POD) of bivariate functions are revisited in this work. We investigate the truncation error first for regular functions trying to improve and sharpen bounds found in Griebel and Harbrecht (2014). But, it happens that (KL)-series expansions are in fact more sensitive to the capacity of fields (we are concerned with) to be well represented by a sum of few products of separated variables functions. We consider this issue very important for approximating some interesting field problems defined as solutions of partial differential equations such as the transient heat problem and the Poisson equation. The main tool, to establish approximation bounds in this type of problems, is linear algebra. We show how the singular value decomposition underlying the (KL)-expansion is connected to the spectrum of some Gram matrices and that the derivation of the corresponding truncation error is related to the spectral properties of these Gram matrices which are structured matrices with low displacement ranks. This methodology allows us to show that Karhunen–Loève’s truncation error decreases exponentially fast with respect to the cut-off frequency, for some interesting transient temperature fields despite their lack of smoothness. |
doi_str_mv | 10.1016/j.cma.2015.02.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753490384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782515000687</els_id><sourcerecordid>1753490384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-9d837eb3ca0c52c7ce14a60f4a4bbe6565877dad9a049f68a11ea96ae0f8a653</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQxhdRsFYfwFuOXhJns9lkgyBI8R8WvPS-TDYT3NImdTcpeOs7ePINfA_fpE_ilnh2YJjD930D34-xSw4JB55fLxOzxiQFLhNIE-DlEZtwVZRxyoU6ZhOATMaFSuUpO_N-CWEUTyfs9gXd29BSu999zruf7y3td18-6t3QGuxt10bkXOeiJmxlt-gs9hQ1QT2I_pydNLjydPF3p2zxcL-YPcXz18fn2d08NkJAH5e1EgVVwiAYmZrCEM8whybDrKool7lURVFjXSJkZZMr5JywzJGgUZhLMWVX49uN694H8r1eW29otcKWusFrXkiRlSBUFqx8tBrXee-o0Rtn1-g-NAd9QKWXOqDSB1QaUh1QhczNmKFQYWvJaW8stYZq68j0uu7sP-lf3a10kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753490384</pqid></control><display><type>article</type><title>Karhunen–Loève’s truncation error for bivariate functions</title><source>Access via ScienceDirect (Elsevier)</source><creator>Azaïez, M. ; Ben Belgacem, F.</creator><creatorcontrib>Azaïez, M. ; Ben Belgacem, F.</creatorcontrib><description>Karhunen–Loève decompositions (KLD) or equivalently Proper Orthogonal Decompositions (POD) of bivariate functions are revisited in this work. We investigate the truncation error first for regular functions trying to improve and sharpen bounds found in Griebel and Harbrecht (2014). But, it happens that (KL)-series expansions are in fact more sensitive to the capacity of fields (we are concerned with) to be well represented by a sum of few products of separated variables functions. We consider this issue very important for approximating some interesting field problems defined as solutions of partial differential equations such as the transient heat problem and the Poisson equation. The main tool, to establish approximation bounds in this type of problems, is linear algebra. We show how the singular value decomposition underlying the (KL)-expansion is connected to the spectrum of some Gram matrices and that the derivation of the corresponding truncation error is related to the spectral properties of these Gram matrices which are structured matrices with low displacement ranks. This methodology allows us to show that Karhunen–Loève’s truncation error decreases exponentially fast with respect to the cut-off frequency, for some interesting transient temperature fields despite their lack of smoothness.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2015.02.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; Cut-off ; Decomposition ; Karhunen–Loève decompositions ; Mathematical analysis ; Mathematical models ; Poisson equation ; Proper Orthogonal Decompositions ; Truncation errors</subject><ispartof>Computer methods in applied mechanics and engineering, 2015-06, Vol.290, p.57-72</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-9d837eb3ca0c52c7ce14a60f4a4bbe6565877dad9a049f68a11ea96ae0f8a653</citedby><cites>FETCH-LOGICAL-c330t-9d837eb3ca0c52c7ce14a60f4a4bbe6565877dad9a049f68a11ea96ae0f8a653</cites><orcidid>0000-0002-1797-4763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2015.02.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Azaïez, M.</creatorcontrib><creatorcontrib>Ben Belgacem, F.</creatorcontrib><title>Karhunen–Loève’s truncation error for bivariate functions</title><title>Computer methods in applied mechanics and engineering</title><description>Karhunen–Loève decompositions (KLD) or equivalently Proper Orthogonal Decompositions (POD) of bivariate functions are revisited in this work. We investigate the truncation error first for regular functions trying to improve and sharpen bounds found in Griebel and Harbrecht (2014). But, it happens that (KL)-series expansions are in fact more sensitive to the capacity of fields (we are concerned with) to be well represented by a sum of few products of separated variables functions. We consider this issue very important for approximating some interesting field problems defined as solutions of partial differential equations such as the transient heat problem and the Poisson equation. The main tool, to establish approximation bounds in this type of problems, is linear algebra. We show how the singular value decomposition underlying the (KL)-expansion is connected to the spectrum of some Gram matrices and that the derivation of the corresponding truncation error is related to the spectral properties of these Gram matrices which are structured matrices with low displacement ranks. This methodology allows us to show that Karhunen–Loève’s truncation error decreases exponentially fast with respect to the cut-off frequency, for some interesting transient temperature fields despite their lack of smoothness.</description><subject>Approximation</subject><subject>Cut-off</subject><subject>Decomposition</subject><subject>Karhunen–Loève decompositions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Poisson equation</subject><subject>Proper Orthogonal Decompositions</subject><subject>Truncation errors</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kM9Kw0AQxhdRsFYfwFuOXhJns9lkgyBI8R8WvPS-TDYT3NImdTcpeOs7ePINfA_fpE_ilnh2YJjD930D34-xSw4JB55fLxOzxiQFLhNIE-DlEZtwVZRxyoU6ZhOATMaFSuUpO_N-CWEUTyfs9gXd29BSu999zruf7y3td18-6t3QGuxt10bkXOeiJmxlt-gs9hQ1QT2I_pydNLjydPF3p2zxcL-YPcXz18fn2d08NkJAH5e1EgVVwiAYmZrCEM8whybDrKool7lURVFjXSJkZZMr5JywzJGgUZhLMWVX49uN694H8r1eW29otcKWusFrXkiRlSBUFqx8tBrXee-o0Rtn1-g-NAd9QKWXOqDSB1QaUh1QhczNmKFQYWvJaW8stYZq68j0uu7sP-lf3a10kg</recordid><startdate>20150615</startdate><enddate>20150615</enddate><creator>Azaïez, M.</creator><creator>Ben Belgacem, F.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1797-4763</orcidid></search><sort><creationdate>20150615</creationdate><title>Karhunen–Loève’s truncation error for bivariate functions</title><author>Azaïez, M. ; Ben Belgacem, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-9d837eb3ca0c52c7ce14a60f4a4bbe6565877dad9a049f68a11ea96ae0f8a653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Cut-off</topic><topic>Decomposition</topic><topic>Karhunen–Loève decompositions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Poisson equation</topic><topic>Proper Orthogonal Decompositions</topic><topic>Truncation errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azaïez, M.</creatorcontrib><creatorcontrib>Ben Belgacem, F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azaïez, M.</au><au>Ben Belgacem, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Karhunen–Loève’s truncation error for bivariate functions</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2015-06-15</date><risdate>2015</risdate><volume>290</volume><spage>57</spage><epage>72</epage><pages>57-72</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>Karhunen–Loève decompositions (KLD) or equivalently Proper Orthogonal Decompositions (POD) of bivariate functions are revisited in this work. We investigate the truncation error first for regular functions trying to improve and sharpen bounds found in Griebel and Harbrecht (2014). But, it happens that (KL)-series expansions are in fact more sensitive to the capacity of fields (we are concerned with) to be well represented by a sum of few products of separated variables functions. We consider this issue very important for approximating some interesting field problems defined as solutions of partial differential equations such as the transient heat problem and the Poisson equation. The main tool, to establish approximation bounds in this type of problems, is linear algebra. We show how the singular value decomposition underlying the (KL)-expansion is connected to the spectrum of some Gram matrices and that the derivation of the corresponding truncation error is related to the spectral properties of these Gram matrices which are structured matrices with low displacement ranks. This methodology allows us to show that Karhunen–Loève’s truncation error decreases exponentially fast with respect to the cut-off frequency, for some interesting transient temperature fields despite their lack of smoothness.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2015.02.019</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1797-4763</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2015-06, Vol.290, p.57-72 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753490384 |
source | Access via ScienceDirect (Elsevier) |
subjects | Approximation Cut-off Decomposition Karhunen–Loève decompositions Mathematical analysis Mathematical models Poisson equation Proper Orthogonal Decompositions Truncation errors |
title | Karhunen–Loève’s truncation error for bivariate functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Karhunen%E2%80%93Lo%C3%A8ve%E2%80%99s%20truncation%20error%20for%20bivariate%20functions&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Aza%C3%AFez,%20M.&rft.date=2015-06-15&rft.volume=290&rft.spage=57&rft.epage=72&rft.pages=57-72&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2015.02.019&rft_dat=%3Cproquest_cross%3E1753490384%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753490384&rft_id=info:pmid/&rft_els_id=S0045782515000687&rfr_iscdi=true |