Karhunen–Loève’s truncation error for bivariate functions

Karhunen–Loève decompositions (KLD) or equivalently Proper Orthogonal Decompositions (POD) of bivariate functions are revisited in this work. We investigate the truncation error first for regular functions trying to improve and sharpen bounds found in Griebel and Harbrecht (2014). But, it happens th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2015-06, Vol.290, p.57-72
Hauptverfasser: Azaïez, M., Ben Belgacem, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue
container_start_page 57
container_title Computer methods in applied mechanics and engineering
container_volume 290
creator Azaïez, M.
Ben Belgacem, F.
description Karhunen–Loève decompositions (KLD) or equivalently Proper Orthogonal Decompositions (POD) of bivariate functions are revisited in this work. We investigate the truncation error first for regular functions trying to improve and sharpen bounds found in Griebel and Harbrecht (2014). But, it happens that (KL)-series expansions are in fact more sensitive to the capacity of fields (we are concerned with) to be well represented by a sum of few products of separated variables functions. We consider this issue very important for approximating some interesting field problems defined as solutions of partial differential equations such as the transient heat problem and the Poisson equation. The main tool, to establish approximation bounds in this type of problems, is linear algebra. We show how the singular value decomposition underlying the (KL)-expansion is connected to the spectrum of some Gram matrices and that the derivation of the corresponding truncation error is related to the spectral properties of these Gram matrices which are structured matrices with low displacement ranks. This methodology allows us to show that Karhunen–Loève’s truncation error decreases exponentially fast with respect to the cut-off frequency, for some interesting transient temperature fields despite their lack of smoothness.
doi_str_mv 10.1016/j.cma.2015.02.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753490384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782515000687</els_id><sourcerecordid>1753490384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-9d837eb3ca0c52c7ce14a60f4a4bbe6565877dad9a049f68a11ea96ae0f8a653</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQxhdRsFYfwFuOXhJns9lkgyBI8R8WvPS-TDYT3NImdTcpeOs7ePINfA_fpE_ilnh2YJjD930D34-xSw4JB55fLxOzxiQFLhNIE-DlEZtwVZRxyoU6ZhOATMaFSuUpO_N-CWEUTyfs9gXd29BSu999zruf7y3td18-6t3QGuxt10bkXOeiJmxlt-gs9hQ1QT2I_pydNLjydPF3p2zxcL-YPcXz18fn2d08NkJAH5e1EgVVwiAYmZrCEM8whybDrKool7lURVFjXSJkZZMr5JywzJGgUZhLMWVX49uN694H8r1eW29otcKWusFrXkiRlSBUFqx8tBrXee-o0Rtn1-g-NAd9QKWXOqDSB1QaUh1QhczNmKFQYWvJaW8stYZq68j0uu7sP-lf3a10kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753490384</pqid></control><display><type>article</type><title>Karhunen–Loève’s truncation error for bivariate functions</title><source>Access via ScienceDirect (Elsevier)</source><creator>Azaïez, M. ; Ben Belgacem, F.</creator><creatorcontrib>Azaïez, M. ; Ben Belgacem, F.</creatorcontrib><description>Karhunen–Loève decompositions (KLD) or equivalently Proper Orthogonal Decompositions (POD) of bivariate functions are revisited in this work. We investigate the truncation error first for regular functions trying to improve and sharpen bounds found in Griebel and Harbrecht (2014). But, it happens that (KL)-series expansions are in fact more sensitive to the capacity of fields (we are concerned with) to be well represented by a sum of few products of separated variables functions. We consider this issue very important for approximating some interesting field problems defined as solutions of partial differential equations such as the transient heat problem and the Poisson equation. The main tool, to establish approximation bounds in this type of problems, is linear algebra. We show how the singular value decomposition underlying the (KL)-expansion is connected to the spectrum of some Gram matrices and that the derivation of the corresponding truncation error is related to the spectral properties of these Gram matrices which are structured matrices with low displacement ranks. This methodology allows us to show that Karhunen–Loève’s truncation error decreases exponentially fast with respect to the cut-off frequency, for some interesting transient temperature fields despite their lack of smoothness.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2015.02.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; Cut-off ; Decomposition ; Karhunen–Loève decompositions ; Mathematical analysis ; Mathematical models ; Poisson equation ; Proper Orthogonal Decompositions ; Truncation errors</subject><ispartof>Computer methods in applied mechanics and engineering, 2015-06, Vol.290, p.57-72</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-9d837eb3ca0c52c7ce14a60f4a4bbe6565877dad9a049f68a11ea96ae0f8a653</citedby><cites>FETCH-LOGICAL-c330t-9d837eb3ca0c52c7ce14a60f4a4bbe6565877dad9a049f68a11ea96ae0f8a653</cites><orcidid>0000-0002-1797-4763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2015.02.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Azaïez, M.</creatorcontrib><creatorcontrib>Ben Belgacem, F.</creatorcontrib><title>Karhunen–Loève’s truncation error for bivariate functions</title><title>Computer methods in applied mechanics and engineering</title><description>Karhunen–Loève decompositions (KLD) or equivalently Proper Orthogonal Decompositions (POD) of bivariate functions are revisited in this work. We investigate the truncation error first for regular functions trying to improve and sharpen bounds found in Griebel and Harbrecht (2014). But, it happens that (KL)-series expansions are in fact more sensitive to the capacity of fields (we are concerned with) to be well represented by a sum of few products of separated variables functions. We consider this issue very important for approximating some interesting field problems defined as solutions of partial differential equations such as the transient heat problem and the Poisson equation. The main tool, to establish approximation bounds in this type of problems, is linear algebra. We show how the singular value decomposition underlying the (KL)-expansion is connected to the spectrum of some Gram matrices and that the derivation of the corresponding truncation error is related to the spectral properties of these Gram matrices which are structured matrices with low displacement ranks. This methodology allows us to show that Karhunen–Loève’s truncation error decreases exponentially fast with respect to the cut-off frequency, for some interesting transient temperature fields despite their lack of smoothness.</description><subject>Approximation</subject><subject>Cut-off</subject><subject>Decomposition</subject><subject>Karhunen–Loève decompositions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Poisson equation</subject><subject>Proper Orthogonal Decompositions</subject><subject>Truncation errors</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kM9Kw0AQxhdRsFYfwFuOXhJns9lkgyBI8R8WvPS-TDYT3NImdTcpeOs7ePINfA_fpE_ilnh2YJjD930D34-xSw4JB55fLxOzxiQFLhNIE-DlEZtwVZRxyoU6ZhOATMaFSuUpO_N-CWEUTyfs9gXd29BSu999zruf7y3td18-6t3QGuxt10bkXOeiJmxlt-gs9hQ1QT2I_pydNLjydPF3p2zxcL-YPcXz18fn2d08NkJAH5e1EgVVwiAYmZrCEM8whybDrKool7lURVFjXSJkZZMr5JywzJGgUZhLMWVX49uN694H8r1eW29otcKWusFrXkiRlSBUFqx8tBrXee-o0Rtn1-g-NAd9QKWXOqDSB1QaUh1QhczNmKFQYWvJaW8stYZq68j0uu7sP-lf3a10kg</recordid><startdate>20150615</startdate><enddate>20150615</enddate><creator>Azaïez, M.</creator><creator>Ben Belgacem, F.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1797-4763</orcidid></search><sort><creationdate>20150615</creationdate><title>Karhunen–Loève’s truncation error for bivariate functions</title><author>Azaïez, M. ; Ben Belgacem, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-9d837eb3ca0c52c7ce14a60f4a4bbe6565877dad9a049f68a11ea96ae0f8a653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Cut-off</topic><topic>Decomposition</topic><topic>Karhunen–Loève decompositions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Poisson equation</topic><topic>Proper Orthogonal Decompositions</topic><topic>Truncation errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azaïez, M.</creatorcontrib><creatorcontrib>Ben Belgacem, F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azaïez, M.</au><au>Ben Belgacem, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Karhunen–Loève’s truncation error for bivariate functions</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2015-06-15</date><risdate>2015</risdate><volume>290</volume><spage>57</spage><epage>72</epage><pages>57-72</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>Karhunen–Loève decompositions (KLD) or equivalently Proper Orthogonal Decompositions (POD) of bivariate functions are revisited in this work. We investigate the truncation error first for regular functions trying to improve and sharpen bounds found in Griebel and Harbrecht (2014). But, it happens that (KL)-series expansions are in fact more sensitive to the capacity of fields (we are concerned with) to be well represented by a sum of few products of separated variables functions. We consider this issue very important for approximating some interesting field problems defined as solutions of partial differential equations such as the transient heat problem and the Poisson equation. The main tool, to establish approximation bounds in this type of problems, is linear algebra. We show how the singular value decomposition underlying the (KL)-expansion is connected to the spectrum of some Gram matrices and that the derivation of the corresponding truncation error is related to the spectral properties of these Gram matrices which are structured matrices with low displacement ranks. This methodology allows us to show that Karhunen–Loève’s truncation error decreases exponentially fast with respect to the cut-off frequency, for some interesting transient temperature fields despite their lack of smoothness.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2015.02.019</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1797-4763</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2015-06, Vol.290, p.57-72
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_1753490384
source Access via ScienceDirect (Elsevier)
subjects Approximation
Cut-off
Decomposition
Karhunen–Loève decompositions
Mathematical analysis
Mathematical models
Poisson equation
Proper Orthogonal Decompositions
Truncation errors
title Karhunen–Loève’s truncation error for bivariate functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Karhunen%E2%80%93Lo%C3%A8ve%E2%80%99s%20truncation%20error%20for%20bivariate%20functions&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Aza%C3%AFez,%20M.&rft.date=2015-06-15&rft.volume=290&rft.spage=57&rft.epage=72&rft.pages=57-72&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2015.02.019&rft_dat=%3Cproquest_cross%3E1753490384%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753490384&rft_id=info:pmid/&rft_els_id=S0045782515000687&rfr_iscdi=true