Interfacial Charge Separation and Recombination in InP and Quasi-Type II InP/CdS Core/Shell Quantum Dot-Molecular Acceptor Complexes

Recent studies of group II–VI colloidal semiconductor heterostuctures, such as CdSe/CdS core/shell quantum dots (QDs) or dot-in-rod nanorods, show that type II and quasi-type II band alignment can facilitate electron transfer and slow down charge recombination in QD–molecular electron acceptor compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2013-08, Vol.117 (32), p.7561-7570
Hauptverfasser: Wu, Kaifeng, Song, Nianhui, Liu, Zheng, Zhu, Haiming, Rodríguez-Córdoba, William, Lian, Tianquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7570
container_issue 32
container_start_page 7561
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 117
creator Wu, Kaifeng
Song, Nianhui
Liu, Zheng
Zhu, Haiming
Rodríguez-Córdoba, William
Lian, Tianquan
description Recent studies of group II–VI colloidal semiconductor heterostuctures, such as CdSe/CdS core/shell quantum dots (QDs) or dot-in-rod nanorods, show that type II and quasi-type II band alignment can facilitate electron transfer and slow down charge recombination in QD–molecular electron acceptor complexes. To explore the general applicability of this wave function engineering approach for controlling charge transfer properties, we investigate exciton relaxation and dissociation dynamics in InP (a group III–V semiconductor) and InP/CdS core/shell (a heterostructure beween group III–V and II–VI semiconductors) QDs by transient absorption spectroscopy. We show that InP/CdS QDs exhibit a quasi-type II band alignment with the 1S electron delocalized throughout the core and shell and the 1S hole confined in the InP core. In InP–methylviologen (MV2+) complexes, excitons in the QD can be dissociated by ultrafast electron transfer to MV2+ from the 1S electron level (with an average time constant of 11.4 ps) as well as 1P and higher electron levels (with a time constant of 0.39 ps), which is followed by charge recombination to regenerate the complex in its ground state (with an average time constant of 47.1 ns). In comparison, InP/CdS-MV2+ complexes show similar ultrafast charge separation and 5-fold slower charge recombination rates, consistent with the quasi-type II band alignment in these heterostructures. This result demonstrates that wave function engineering in nanoheterostructures of group III–V and II–VI semiconductors provides a promising approach for optimizing their light harvesting and charge separation for solar energy conversion applications.
doi_str_mv 10.1021/jp402425w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753490334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753490334</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-f35b1e409d97a345998abce6b4f2c59f215d1bcf81d665b53193f589a04870433</originalsourceid><addsrcrecordid>eNqF0ctu1DAUBuAIgWgpLHgB5A0SLML4msTLKkCJVMRlyjo6cY5pRokd7ETQPQ9eDzO0GyRWtn9_Or6cLHvO6BtGOdvsZkm55Orng-yUKU5zxZl6mOa00rkqhD7JnsS4o5QyweXj7ISLFKblafa7cQsGC2aAkdTXEL4j2eIMAZbBOwKuJ1_R-Kkb3CEZHGnc5z8bX1aIQ351MyNpmn26qfstqX3AzfYax3EP3LJO5K1f8o9-RLOOEMi5MTgvPiQ5zSP-wvg0e2RhjPjsOJ5l396_u6o_5JefLpr6_DIHKeWSW6E6hpLqXpcgpNK6gs5g0UnLjdI2PbpnnbEV64tCdUowLayqNFBZlVQKcZa9OtSdg_-xYlzaaYgm3RQc-jW2rFRCaiqE_D-VvKCMH-jrAzXBxxjQtnMYJgg3LaPtvj_tXX-SfXEsu3YT9nfyb0MSeHkEEA2MNoAzQ7x3ZVGWVVHeOzCx3fk1uPRx_zjwFokKomI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426012334</pqid></control><display><type>article</type><title>Interfacial Charge Separation and Recombination in InP and Quasi-Type II InP/CdS Core/Shell Quantum Dot-Molecular Acceptor Complexes</title><source>American Chemical Society Journals</source><creator>Wu, Kaifeng ; Song, Nianhui ; Liu, Zheng ; Zhu, Haiming ; Rodríguez-Córdoba, William ; Lian, Tianquan</creator><creatorcontrib>Wu, Kaifeng ; Song, Nianhui ; Liu, Zheng ; Zhu, Haiming ; Rodríguez-Córdoba, William ; Lian, Tianquan</creatorcontrib><description>Recent studies of group II–VI colloidal semiconductor heterostuctures, such as CdSe/CdS core/shell quantum dots (QDs) or dot-in-rod nanorods, show that type II and quasi-type II band alignment can facilitate electron transfer and slow down charge recombination in QD–molecular electron acceptor complexes. To explore the general applicability of this wave function engineering approach for controlling charge transfer properties, we investigate exciton relaxation and dissociation dynamics in InP (a group III–V semiconductor) and InP/CdS core/shell (a heterostructure beween group III–V and II–VI semiconductors) QDs by transient absorption spectroscopy. We show that InP/CdS QDs exhibit a quasi-type II band alignment with the 1S electron delocalized throughout the core and shell and the 1S hole confined in the InP core. In InP–methylviologen (MV2+) complexes, excitons in the QD can be dissociated by ultrafast electron transfer to MV2+ from the 1S electron level (with an average time constant of 11.4 ps) as well as 1P and higher electron levels (with a time constant of 0.39 ps), which is followed by charge recombination to regenerate the complex in its ground state (with an average time constant of 47.1 ns). In comparison, InP/CdS-MV2+ complexes show similar ultrafast charge separation and 5-fold slower charge recombination rates, consistent with the quasi-type II band alignment in these heterostructures. This result demonstrates that wave function engineering in nanoheterostructures of group III–V and II–VI semiconductors provides a promising approach for optimizing their light harvesting and charge separation for solar energy conversion applications.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp402425w</identifier><identifier>PMID: 23639000</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Alignment ; Charge ; Charge transfer ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Indium phosphides ; Materials science ; Nanoscale materials and structures: fabrication and characterization ; Physics ; Quantum dots ; Semiconductors ; Separation ; Time constant ; Wave functions</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2013-08, Vol.117 (32), p.7561-7570</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-f35b1e409d97a345998abce6b4f2c59f215d1bcf81d665b53193f589a04870433</citedby><cites>FETCH-LOGICAL-a444t-f35b1e409d97a345998abce6b4f2c59f215d1bcf81d665b53193f589a04870433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp402425w$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp402425w$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27677867$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23639000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Kaifeng</creatorcontrib><creatorcontrib>Song, Nianhui</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Zhu, Haiming</creatorcontrib><creatorcontrib>Rodríguez-Córdoba, William</creatorcontrib><creatorcontrib>Lian, Tianquan</creatorcontrib><title>Interfacial Charge Separation and Recombination in InP and Quasi-Type II InP/CdS Core/Shell Quantum Dot-Molecular Acceptor Complexes</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Recent studies of group II–VI colloidal semiconductor heterostuctures, such as CdSe/CdS core/shell quantum dots (QDs) or dot-in-rod nanorods, show that type II and quasi-type II band alignment can facilitate electron transfer and slow down charge recombination in QD–molecular electron acceptor complexes. To explore the general applicability of this wave function engineering approach for controlling charge transfer properties, we investigate exciton relaxation and dissociation dynamics in InP (a group III–V semiconductor) and InP/CdS core/shell (a heterostructure beween group III–V and II–VI semiconductors) QDs by transient absorption spectroscopy. We show that InP/CdS QDs exhibit a quasi-type II band alignment with the 1S electron delocalized throughout the core and shell and the 1S hole confined in the InP core. In InP–methylviologen (MV2+) complexes, excitons in the QD can be dissociated by ultrafast electron transfer to MV2+ from the 1S electron level (with an average time constant of 11.4 ps) as well as 1P and higher electron levels (with a time constant of 0.39 ps), which is followed by charge recombination to regenerate the complex in its ground state (with an average time constant of 47.1 ns). In comparison, InP/CdS-MV2+ complexes show similar ultrafast charge separation and 5-fold slower charge recombination rates, consistent with the quasi-type II band alignment in these heterostructures. This result demonstrates that wave function engineering in nanoheterostructures of group III–V and II–VI semiconductors provides a promising approach for optimizing their light harvesting and charge separation for solar energy conversion applications.</description><subject>Alignment</subject><subject>Charge</subject><subject>Charge transfer</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Indium phosphides</subject><subject>Materials science</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Physics</subject><subject>Quantum dots</subject><subject>Semiconductors</subject><subject>Separation</subject><subject>Time constant</subject><subject>Wave functions</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0ctu1DAUBuAIgWgpLHgB5A0SLML4msTLKkCJVMRlyjo6cY5pRokd7ETQPQ9eDzO0GyRWtn9_Or6cLHvO6BtGOdvsZkm55Orng-yUKU5zxZl6mOa00rkqhD7JnsS4o5QyweXj7ISLFKblafa7cQsGC2aAkdTXEL4j2eIMAZbBOwKuJ1_R-Kkb3CEZHGnc5z8bX1aIQ351MyNpmn26qfstqX3AzfYax3EP3LJO5K1f8o9-RLOOEMi5MTgvPiQ5zSP-wvg0e2RhjPjsOJ5l396_u6o_5JefLpr6_DIHKeWSW6E6hpLqXpcgpNK6gs5g0UnLjdI2PbpnnbEV64tCdUowLayqNFBZlVQKcZa9OtSdg_-xYlzaaYgm3RQc-jW2rFRCaiqE_D-VvKCMH-jrAzXBxxjQtnMYJgg3LaPtvj_tXX-SfXEsu3YT9nfyb0MSeHkEEA2MNoAzQ7x3ZVGWVVHeOzCx3fk1uPRx_zjwFokKomI</recordid><startdate>20130815</startdate><enddate>20130815</enddate><creator>Wu, Kaifeng</creator><creator>Song, Nianhui</creator><creator>Liu, Zheng</creator><creator>Zhu, Haiming</creator><creator>Rodríguez-Córdoba, William</creator><creator>Lian, Tianquan</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130815</creationdate><title>Interfacial Charge Separation and Recombination in InP and Quasi-Type II InP/CdS Core/Shell Quantum Dot-Molecular Acceptor Complexes</title><author>Wu, Kaifeng ; Song, Nianhui ; Liu, Zheng ; Zhu, Haiming ; Rodríguez-Córdoba, William ; Lian, Tianquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-f35b1e409d97a345998abce6b4f2c59f215d1bcf81d665b53193f589a04870433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alignment</topic><topic>Charge</topic><topic>Charge transfer</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Indium phosphides</topic><topic>Materials science</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Physics</topic><topic>Quantum dots</topic><topic>Semiconductors</topic><topic>Separation</topic><topic>Time constant</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Kaifeng</creatorcontrib><creatorcontrib>Song, Nianhui</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Zhu, Haiming</creatorcontrib><creatorcontrib>Rodríguez-Córdoba, William</creatorcontrib><creatorcontrib>Lian, Tianquan</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Kaifeng</au><au>Song, Nianhui</au><au>Liu, Zheng</au><au>Zhu, Haiming</au><au>Rodríguez-Córdoba, William</au><au>Lian, Tianquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Charge Separation and Recombination in InP and Quasi-Type II InP/CdS Core/Shell Quantum Dot-Molecular Acceptor Complexes</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2013-08-15</date><risdate>2013</risdate><volume>117</volume><issue>32</issue><spage>7561</spage><epage>7570</epage><pages>7561-7570</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Recent studies of group II–VI colloidal semiconductor heterostuctures, such as CdSe/CdS core/shell quantum dots (QDs) or dot-in-rod nanorods, show that type II and quasi-type II band alignment can facilitate electron transfer and slow down charge recombination in QD–molecular electron acceptor complexes. To explore the general applicability of this wave function engineering approach for controlling charge transfer properties, we investigate exciton relaxation and dissociation dynamics in InP (a group III–V semiconductor) and InP/CdS core/shell (a heterostructure beween group III–V and II–VI semiconductors) QDs by transient absorption spectroscopy. We show that InP/CdS QDs exhibit a quasi-type II band alignment with the 1S electron delocalized throughout the core and shell and the 1S hole confined in the InP core. In InP–methylviologen (MV2+) complexes, excitons in the QD can be dissociated by ultrafast electron transfer to MV2+ from the 1S electron level (with an average time constant of 11.4 ps) as well as 1P and higher electron levels (with a time constant of 0.39 ps), which is followed by charge recombination to regenerate the complex in its ground state (with an average time constant of 47.1 ns). In comparison, InP/CdS-MV2+ complexes show similar ultrafast charge separation and 5-fold slower charge recombination rates, consistent with the quasi-type II band alignment in these heterostructures. This result demonstrates that wave function engineering in nanoheterostructures of group III–V and II–VI semiconductors provides a promising approach for optimizing their light harvesting and charge separation for solar energy conversion applications.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23639000</pmid><doi>10.1021/jp402425w</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2013-08, Vol.117 (32), p.7561-7570
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_1753490334
source American Chemical Society Journals
subjects Alignment
Charge
Charge transfer
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Indium phosphides
Materials science
Nanoscale materials and structures: fabrication and characterization
Physics
Quantum dots
Semiconductors
Separation
Time constant
Wave functions
title Interfacial Charge Separation and Recombination in InP and Quasi-Type II InP/CdS Core/Shell Quantum Dot-Molecular Acceptor Complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Charge%20Separation%20and%20Recombination%20in%20InP%20and%20Quasi-Type%20II%20InP/CdS%20Core/Shell%20Quantum%20Dot-Molecular%20Acceptor%20Complexes&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Wu,%20Kaifeng&rft.date=2013-08-15&rft.volume=117&rft.issue=32&rft.spage=7561&rft.epage=7570&rft.pages=7561-7570&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp402425w&rft_dat=%3Cproquest_cross%3E1753490334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1426012334&rft_id=info:pmid/23639000&rfr_iscdi=true