Exact quantum defect theory approach for lithium in magnetic fields

We calculate the diamagnetic spectrum of lithium at highly excited states up to the positive energy range using the exact quantum defect theory approach. The concerned excitation is one-photon transition from the ground state 2s to the highly excited states np with π and σ polarizations respectively...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2013, Vol.22 (1), p.183-186
1. Verfasser: 徐家坤 陈海清 刘红平
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue 1
container_start_page 183
container_title Chinese physics B
container_volume 22
creator 徐家坤 陈海清 刘红平
description We calculate the diamagnetic spectrum of lithium at highly excited states up to the positive energy range using the exact quantum defect theory approach. The concerned excitation is one-photon transition from the ground state 2s to the highly excited states np with π and σ polarizations respectively. Lithium has a small quantum defect value 0.05 for the np states, and its diamagnetic spectrum is very similar to that of hydrogen in the energy range approaching the ionization limit. However, a careful calculation shows that the spectrum has a significant discrepancy with that of hydrogen when the energy is lower than -70 cm-1. The effect of the quantum defect is also discussed for the Stark spectrum. It is found that the σ transition to the np states in an electric field has a similar behavior to that of hydrogen due to zero interaction with channel ns.
doi_str_mv 10.1088/1674-1056/22/1/013204
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753489122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>44445112</cqvip_id><sourcerecordid>1753489122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-6eda3d3445b6751fe8c27b50efbad9b374de80427734518c69c9f439241fcc373</originalsourceid><addsrcrecordid>eNo9kMtqwzAQRUVpoWnaTyiou25ca_Sw5GUJ6QMC3bRrIctSrOJHYsnQ_H0dEjKby8C5w3AQegTyAkSpHArJMyCiyCnNISfAKOFXaEGJUBlTjF-jxYW5RXcx_hJSAKFsgVbrP2MT3k-mT1OHa-fdvKbGDeMBm91uHIxtsB9G3IbUhBkJPe7MtncpWOyDa-t4j268aaN7OOcS_bytv1cf2ebr_XP1usksA5qywtWG1YxzURVSgHfKUlkJ4nxl6rJiktdOEU6lZFyAskVpS89ZSTl4a5lkS_R8ujt_tZ9cTLoL0bq2Nb0bpqhBCsZVCZTOqDihdhxiHJ3XuzF0ZjxoIPooTR-F6KMQTakGfZI2957OvWbot_vQby9FPo8AoOwf3nJqIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753489122</pqid></control><display><type>article</type><title>Exact quantum defect theory approach for lithium in magnetic fields</title><source>Institute of Physics Journals</source><creator>徐家坤 陈海清 刘红平</creator><creatorcontrib>徐家坤 陈海清 刘红平</creatorcontrib><description>We calculate the diamagnetic spectrum of lithium at highly excited states up to the positive energy range using the exact quantum defect theory approach. The concerned excitation is one-photon transition from the ground state 2s to the highly excited states np with π and σ polarizations respectively. Lithium has a small quantum defect value 0.05 for the np states, and its diamagnetic spectrum is very similar to that of hydrogen in the energy range approaching the ionization limit. However, a careful calculation shows that the spectrum has a significant discrepancy with that of hydrogen when the energy is lower than -70 cm-1. The effect of the quantum defect is also discussed for the Stark spectrum. It is found that the σ transition to the np states in an electric field has a similar behavior to that of hydrogen due to zero interaction with channel ns.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>EISSN: 1741-4199</identifier><identifier>DOI: 10.1088/1674-1056/22/1/013204</identifier><language>eng</language><subject>Channels ; Defects ; Diamagnetism ; Excitation ; Excitation spectra ; Hydrogen-based energy ; Lithium ; Magnetic fields ; Mathematical analysis ; 相互作用 ; 磁场 ; 缺陷 ; 能量范围 ; 计算表 ; 量子亏损 ; 锂 ; 高激发态</subject><ispartof>Chinese physics B, 2013, Vol.22 (1), p.183-186</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-6eda3d3445b6751fe8c27b50efbad9b374de80427734518c69c9f439241fcc373</citedby><cites>FETCH-LOGICAL-c312t-6eda3d3445b6751fe8c27b50efbad9b374de80427734518c69c9f439241fcc373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>315,781,785,4025,27927,27928,27929</link.rule.ids></links><search><creatorcontrib>徐家坤 陈海清 刘红平</creatorcontrib><title>Exact quantum defect theory approach for lithium in magnetic fields</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>We calculate the diamagnetic spectrum of lithium at highly excited states up to the positive energy range using the exact quantum defect theory approach. The concerned excitation is one-photon transition from the ground state 2s to the highly excited states np with π and σ polarizations respectively. Lithium has a small quantum defect value 0.05 for the np states, and its diamagnetic spectrum is very similar to that of hydrogen in the energy range approaching the ionization limit. However, a careful calculation shows that the spectrum has a significant discrepancy with that of hydrogen when the energy is lower than -70 cm-1. The effect of the quantum defect is also discussed for the Stark spectrum. It is found that the σ transition to the np states in an electric field has a similar behavior to that of hydrogen due to zero interaction with channel ns.</description><subject>Channels</subject><subject>Defects</subject><subject>Diamagnetism</subject><subject>Excitation</subject><subject>Excitation spectra</subject><subject>Hydrogen-based energy</subject><subject>Lithium</subject><subject>Magnetic fields</subject><subject>Mathematical analysis</subject><subject>相互作用</subject><subject>磁场</subject><subject>缺陷</subject><subject>能量范围</subject><subject>计算表</subject><subject>量子亏损</subject><subject>锂</subject><subject>高激发态</subject><issn>1674-1056</issn><issn>2058-3834</issn><issn>1741-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kMtqwzAQRUVpoWnaTyiou25ca_Sw5GUJ6QMC3bRrIctSrOJHYsnQ_H0dEjKby8C5w3AQegTyAkSpHArJMyCiyCnNISfAKOFXaEGJUBlTjF-jxYW5RXcx_hJSAKFsgVbrP2MT3k-mT1OHa-fdvKbGDeMBm91uHIxtsB9G3IbUhBkJPe7MtncpWOyDa-t4j268aaN7OOcS_bytv1cf2ebr_XP1usksA5qywtWG1YxzURVSgHfKUlkJ4nxl6rJiktdOEU6lZFyAskVpS89ZSTl4a5lkS_R8ujt_tZ9cTLoL0bq2Nb0bpqhBCsZVCZTOqDihdhxiHJ3XuzF0ZjxoIPooTR-F6KMQTakGfZI2957OvWbot_vQby9FPo8AoOwf3nJqIA</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>徐家坤 陈海清 刘红平</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>2013</creationdate><title>Exact quantum defect theory approach for lithium in magnetic fields</title><author>徐家坤 陈海清 刘红平</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-6eda3d3445b6751fe8c27b50efbad9b374de80427734518c69c9f439241fcc373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Channels</topic><topic>Defects</topic><topic>Diamagnetism</topic><topic>Excitation</topic><topic>Excitation spectra</topic><topic>Hydrogen-based energy</topic><topic>Lithium</topic><topic>Magnetic fields</topic><topic>Mathematical analysis</topic><topic>相互作用</topic><topic>磁场</topic><topic>缺陷</topic><topic>能量范围</topic><topic>计算表</topic><topic>量子亏损</topic><topic>锂</topic><topic>高激发态</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>徐家坤 陈海清 刘红平</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>徐家坤 陈海清 刘红平</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact quantum defect theory approach for lithium in magnetic fields</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2013</date><risdate>2013</risdate><volume>22</volume><issue>1</issue><spage>183</spage><epage>186</epage><pages>183-186</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><eissn>1741-4199</eissn><abstract>We calculate the diamagnetic spectrum of lithium at highly excited states up to the positive energy range using the exact quantum defect theory approach. The concerned excitation is one-photon transition from the ground state 2s to the highly excited states np with π and σ polarizations respectively. Lithium has a small quantum defect value 0.05 for the np states, and its diamagnetic spectrum is very similar to that of hydrogen in the energy range approaching the ionization limit. However, a careful calculation shows that the spectrum has a significant discrepancy with that of hydrogen when the energy is lower than -70 cm-1. The effect of the quantum defect is also discussed for the Stark spectrum. It is found that the σ transition to the np states in an electric field has a similar behavior to that of hydrogen due to zero interaction with channel ns.</abstract><doi>10.1088/1674-1056/22/1/013204</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2013, Vol.22 (1), p.183-186
issn 1674-1056
2058-3834
1741-4199
language eng
recordid cdi_proquest_miscellaneous_1753489122
source Institute of Physics Journals
subjects Channels
Defects
Diamagnetism
Excitation
Excitation spectra
Hydrogen-based energy
Lithium
Magnetic fields
Mathematical analysis
相互作用
磁场
缺陷
能量范围
计算表
量子亏损

高激发态
title Exact quantum defect theory approach for lithium in magnetic fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T05%3A10%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20quantum%20defect%20theory%20approach%20for%20lithium%20in%20magnetic%20fields&rft.jtitle=Chinese%20physics%20B&rft.au=%E5%BE%90%E5%AE%B6%E5%9D%A4%20%E9%99%88%E6%B5%B7%E6%B8%85%20%E5%88%98%E7%BA%A2%E5%B9%B3&rft.date=2013&rft.volume=22&rft.issue=1&rft.spage=183&rft.epage=186&rft.pages=183-186&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/22/1/013204&rft_dat=%3Cproquest_cross%3E1753489122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753489122&rft_id=info:pmid/&rft_cqvip_id=44445112&rfr_iscdi=true