Dehydration of Isobutanol and the Elimination of Water from Fuel Alcohols

Rate coefficients for the dehydration of isobutanol have been determined experimentally from comparative rate single pulse shock tube measurements and calculated via multistructural transition state theory (MS-TST). They are represented by the Arrhenius expression, k(isobutanol → isobutene + H2O)exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Physical Chemistry 2013-08, Vol.117 (31), p.6724-6736
Hauptverfasser: Rosado-Reyes, Claudette M, Tsang, Wing, Alecu, Ionut M, Merchant, Shamel S, Green, William H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6736
container_issue 31
container_start_page 6724
container_title Journal of Physical Chemistry
container_volume 117
creator Rosado-Reyes, Claudette M
Tsang, Wing
Alecu, Ionut M
Merchant, Shamel S
Green, William H
description Rate coefficients for the dehydration of isobutanol have been determined experimentally from comparative rate single pulse shock tube measurements and calculated via multistructural transition state theory (MS-TST). They are represented by the Arrhenius expression, k(isobutanol → isobutene + H2O)experimental = 7.2 × 1013 exp(−35300 K/T) s–1. The theoretical work leads to the high pressure rate expression, k(isobutanol → isobutene + H2O)theory = 3.5 × 1013 exp(−35400 K/T) s–1. Results are thus within a factor of 2 of each other. The experimental results cover the temperature range 1090–1240 K and pressure range 1.5–6 atm, with no discernible pressure effects. Analysis of these results, in combination with earlier single pulse shock tube work, made it possible to derive the governing factors that control the rate coefficients for alcohol dehydration in general. Alcohol dehydration rate constants depend on the location of the hydroxyl group (primary, secondary, and tertiary) and the number of available H-atoms adjacent to the OH group for water elimination. The position of the H-atoms in the hydrocarbon backbone appears to be unimportant except for highly substituted molecules. From these correlations, we have derived k(isopropanol → propene + H2O) = 7.2 × 1013 exp(−33000 K/T) s–1. Comparison of experimental determination with theoretical calculations for this dehydration, and those for ethanol show deviations of the same magnitude as for isobutanol. Systematic differences between experiments and theoretical calculations are common.
doi_str_mv 10.1021/jp4045513
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753485878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1419341214</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-3a1a6abe231a16988b6485b2d1952607ebe70edc4faec48c11bec77b738cd2d03</originalsourceid><addsrcrecordid>eNqF0U2LFDEQBuAgivuhB_-ANIKgh9ZUvvu4rLvrwIIXxWNIp6uZHtLJmKQP---3ZcbZi7CnqsPDWxQvIe-AfgHK4OtuL6iQEvgLcg6S0VYykC_XnZqulYp3Z-SilB2lFDgTr8kZ44ZKo_k52XzD7cOQXZ1SbNLYbErql-piCo2LQ1O32NyEaZ7iSfx2FXMz5jQ3twuG5ir4tE2hvCGvRhcKvj3OS_Lr9ubn9ff2_sfd5vrqvnWCm9pyB065HhkHB6ozplfCyJ4N0EmmqMYeNcXBi9GhF8YD9Oi17jU3fmAD5ZfkwyE3lTrZ4qeKfutTjOirBVDrz3JFnw5on9OfBUu181Q8huAipqVY0JKvZ402z1OpmNKUdvA8FdBxAQzESj8fqM-plIyj3edpdvnBArV_S7On0lb7_hi79DMOJ_mvpRV8PAJXvAtjdtFP5clppY2k8sk5X-wuLTmuRfzn4CMXMKef</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1419341214</pqid></control><display><type>article</type><title>Dehydration of Isobutanol and the Elimination of Water from Fuel Alcohols</title><source>ACS Publications</source><creator>Rosado-Reyes, Claudette M ; Tsang, Wing ; Alecu, Ionut M ; Merchant, Shamel S ; Green, William H</creator><creatorcontrib>Rosado-Reyes, Claudette M ; Tsang, Wing ; Alecu, Ionut M ; Merchant, Shamel S ; Green, William H ; Energy Frontier Research Centers (EFRC) ; Combustion Energy Frontier Research Center (CEFRC)</creatorcontrib><description>Rate coefficients for the dehydration of isobutanol have been determined experimentally from comparative rate single pulse shock tube measurements and calculated via multistructural transition state theory (MS-TST). They are represented by the Arrhenius expression, k(isobutanol → isobutene + H2O)experimental = 7.2 × 1013 exp(−35300 K/T) s–1. The theoretical work leads to the high pressure rate expression, k(isobutanol → isobutene + H2O)theory = 3.5 × 1013 exp(−35400 K/T) s–1. Results are thus within a factor of 2 of each other. The experimental results cover the temperature range 1090–1240 K and pressure range 1.5–6 atm, with no discernible pressure effects. Analysis of these results, in combination with earlier single pulse shock tube work, made it possible to derive the governing factors that control the rate coefficients for alcohol dehydration in general. Alcohol dehydration rate constants depend on the location of the hydroxyl group (primary, secondary, and tertiary) and the number of available H-atoms adjacent to the OH group for water elimination. The position of the H-atoms in the hydrocarbon backbone appears to be unimportant except for highly substituted molecules. From these correlations, we have derived k(isopropanol → propene + H2O) = 7.2 × 1013 exp(−33000 K/T) s–1. Comparison of experimental determination with theoretical calculations for this dehydration, and those for ethanol show deviations of the same magnitude as for isobutanol. Systematic differences between experiments and theoretical calculations are common.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp4045513</identifier><identifier>PMID: 23805873</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Alcohols ; biofuels (including algae and biomass), hydrogen and fuel cells, combustion, carbon capture ; Chemistry ; Dehydration ; Deviation ; Ethanol ; Ethyl alcohol ; Exact sciences and technology ; Isobutanol ; Kinetics and mechanisms ; Mathematical analysis ; Organic chemistry ; Reactivity and mechanisms ; Shock tubes</subject><ispartof>Journal of Physical Chemistry, 2013-08, Vol.117 (31), p.6724-6736</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-3a1a6abe231a16988b6485b2d1952607ebe70edc4faec48c11bec77b738cd2d03</citedby><cites>FETCH-LOGICAL-a438t-3a1a6abe231a16988b6485b2d1952607ebe70edc4faec48c11bec77b738cd2d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp4045513$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp4045513$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27678505$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23805873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1160895$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosado-Reyes, Claudette M</creatorcontrib><creatorcontrib>Tsang, Wing</creatorcontrib><creatorcontrib>Alecu, Ionut M</creatorcontrib><creatorcontrib>Merchant, Shamel S</creatorcontrib><creatorcontrib>Green, William H</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Combustion Energy Frontier Research Center (CEFRC)</creatorcontrib><title>Dehydration of Isobutanol and the Elimination of Water from Fuel Alcohols</title><title>Journal of Physical Chemistry</title><addtitle>J. Phys. Chem. A</addtitle><description>Rate coefficients for the dehydration of isobutanol have been determined experimentally from comparative rate single pulse shock tube measurements and calculated via multistructural transition state theory (MS-TST). They are represented by the Arrhenius expression, k(isobutanol → isobutene + H2O)experimental = 7.2 × 1013 exp(−35300 K/T) s–1. The theoretical work leads to the high pressure rate expression, k(isobutanol → isobutene + H2O)theory = 3.5 × 1013 exp(−35400 K/T) s–1. Results are thus within a factor of 2 of each other. The experimental results cover the temperature range 1090–1240 K and pressure range 1.5–6 atm, with no discernible pressure effects. Analysis of these results, in combination with earlier single pulse shock tube work, made it possible to derive the governing factors that control the rate coefficients for alcohol dehydration in general. Alcohol dehydration rate constants depend on the location of the hydroxyl group (primary, secondary, and tertiary) and the number of available H-atoms adjacent to the OH group for water elimination. The position of the H-atoms in the hydrocarbon backbone appears to be unimportant except for highly substituted molecules. From these correlations, we have derived k(isopropanol → propene + H2O) = 7.2 × 1013 exp(−33000 K/T) s–1. Comparison of experimental determination with theoretical calculations for this dehydration, and those for ethanol show deviations of the same magnitude as for isobutanol. Systematic differences between experiments and theoretical calculations are common.</description><subject>Alcohols</subject><subject>biofuels (including algae and biomass), hydrogen and fuel cells, combustion, carbon capture</subject><subject>Chemistry</subject><subject>Dehydration</subject><subject>Deviation</subject><subject>Ethanol</subject><subject>Ethyl alcohol</subject><subject>Exact sciences and technology</subject><subject>Isobutanol</subject><subject>Kinetics and mechanisms</subject><subject>Mathematical analysis</subject><subject>Organic chemistry</subject><subject>Reactivity and mechanisms</subject><subject>Shock tubes</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0U2LFDEQBuAgivuhB_-ANIKgh9ZUvvu4rLvrwIIXxWNIp6uZHtLJmKQP---3ZcbZi7CnqsPDWxQvIe-AfgHK4OtuL6iQEvgLcg6S0VYykC_XnZqulYp3Z-SilB2lFDgTr8kZ44ZKo_k52XzD7cOQXZ1SbNLYbErql-piCo2LQ1O32NyEaZ7iSfx2FXMz5jQ3twuG5ir4tE2hvCGvRhcKvj3OS_Lr9ubn9ff2_sfd5vrqvnWCm9pyB065HhkHB6ozplfCyJ4N0EmmqMYeNcXBi9GhF8YD9Oi17jU3fmAD5ZfkwyE3lTrZ4qeKfutTjOirBVDrz3JFnw5on9OfBUu181Q8huAipqVY0JKvZ402z1OpmNKUdvA8FdBxAQzESj8fqM-plIyj3edpdvnBArV_S7On0lb7_hi79DMOJ_mvpRV8PAJXvAtjdtFP5clppY2k8sk5X-wuLTmuRfzn4CMXMKef</recordid><startdate>20130808</startdate><enddate>20130808</enddate><creator>Rosado-Reyes, Claudette M</creator><creator>Tsang, Wing</creator><creator>Alecu, Ionut M</creator><creator>Merchant, Shamel S</creator><creator>Green, William H</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20130808</creationdate><title>Dehydration of Isobutanol and the Elimination of Water from Fuel Alcohols</title><author>Rosado-Reyes, Claudette M ; Tsang, Wing ; Alecu, Ionut M ; Merchant, Shamel S ; Green, William H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-3a1a6abe231a16988b6485b2d1952607ebe70edc4faec48c11bec77b738cd2d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alcohols</topic><topic>biofuels (including algae and biomass), hydrogen and fuel cells, combustion, carbon capture</topic><topic>Chemistry</topic><topic>Dehydration</topic><topic>Deviation</topic><topic>Ethanol</topic><topic>Ethyl alcohol</topic><topic>Exact sciences and technology</topic><topic>Isobutanol</topic><topic>Kinetics and mechanisms</topic><topic>Mathematical analysis</topic><topic>Organic chemistry</topic><topic>Reactivity and mechanisms</topic><topic>Shock tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosado-Reyes, Claudette M</creatorcontrib><creatorcontrib>Tsang, Wing</creatorcontrib><creatorcontrib>Alecu, Ionut M</creatorcontrib><creatorcontrib>Merchant, Shamel S</creatorcontrib><creatorcontrib>Green, William H</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Combustion Energy Frontier Research Center (CEFRC)</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of Physical Chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosado-Reyes, Claudette M</au><au>Tsang, Wing</au><au>Alecu, Ionut M</au><au>Merchant, Shamel S</au><au>Green, William H</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Combustion Energy Frontier Research Center (CEFRC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dehydration of Isobutanol and the Elimination of Water from Fuel Alcohols</atitle><jtitle>Journal of Physical Chemistry</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2013-08-08</date><risdate>2013</risdate><volume>117</volume><issue>31</issue><spage>6724</spage><epage>6736</epage><pages>6724-6736</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Rate coefficients for the dehydration of isobutanol have been determined experimentally from comparative rate single pulse shock tube measurements and calculated via multistructural transition state theory (MS-TST). They are represented by the Arrhenius expression, k(isobutanol → isobutene + H2O)experimental = 7.2 × 1013 exp(−35300 K/T) s–1. The theoretical work leads to the high pressure rate expression, k(isobutanol → isobutene + H2O)theory = 3.5 × 1013 exp(−35400 K/T) s–1. Results are thus within a factor of 2 of each other. The experimental results cover the temperature range 1090–1240 K and pressure range 1.5–6 atm, with no discernible pressure effects. Analysis of these results, in combination with earlier single pulse shock tube work, made it possible to derive the governing factors that control the rate coefficients for alcohol dehydration in general. Alcohol dehydration rate constants depend on the location of the hydroxyl group (primary, secondary, and tertiary) and the number of available H-atoms adjacent to the OH group for water elimination. The position of the H-atoms in the hydrocarbon backbone appears to be unimportant except for highly substituted molecules. From these correlations, we have derived k(isopropanol → propene + H2O) = 7.2 × 1013 exp(−33000 K/T) s–1. Comparison of experimental determination with theoretical calculations for this dehydration, and those for ethanol show deviations of the same magnitude as for isobutanol. Systematic differences between experiments and theoretical calculations are common.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23805873</pmid><doi>10.1021/jp4045513</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof Journal of Physical Chemistry, 2013-08, Vol.117 (31), p.6724-6736
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_1753485878
source ACS Publications
subjects Alcohols
biofuels (including algae and biomass), hydrogen and fuel cells, combustion, carbon capture
Chemistry
Dehydration
Deviation
Ethanol
Ethyl alcohol
Exact sciences and technology
Isobutanol
Kinetics and mechanisms
Mathematical analysis
Organic chemistry
Reactivity and mechanisms
Shock tubes
title Dehydration of Isobutanol and the Elimination of Water from Fuel Alcohols
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dehydration%20of%20Isobutanol%20and%20the%20Elimination%20of%20Water%20from%20Fuel%20Alcohols&rft.jtitle=Journal%20of%20Physical%20Chemistry&rft.au=Rosado-Reyes,%20Claudette%20M&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2013-08-08&rft.volume=117&rft.issue=31&rft.spage=6724&rft.epage=6736&rft.pages=6724-6736&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp4045513&rft_dat=%3Cproquest_osti_%3E1419341214%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1419341214&rft_id=info:pmid/23805873&rfr_iscdi=true