Hydrogen Bond Cooperativity in Water Hexamers: Atomic Energy Perspective of Local Stabilities

Atomic energies are used to describe local stability in eight low-lying water hexamers: prism, cage, boat 1, boat 2, bag, chair, book 1, and book 2. The energies are evaluated using the quantum theory of atoms in molecules (QTAIM) at MP2/aug-cc-pVTZ geometries. It is found that the simple, stabilizi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2013-10, Vol.117 (41), p.10790-10799
Hauptverfasser: Albrecht, Laura, Chowdhury, Saptarshi, Boyd, Russell J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10799
container_issue 41
container_start_page 10790
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 117
creator Albrecht, Laura
Chowdhury, Saptarshi
Boyd, Russell J.
description Atomic energies are used to describe local stability in eight low-lying water hexamers: prism, cage, boat 1, boat 2, bag, chair, book 1, and book 2. The energies are evaluated using the quantum theory of atoms in molecules (QTAIM) at MP2/aug-cc-pVTZ geometries. It is found that the simple, stabilizing cooperativity observed in linear hydrogen-bonded water systems is diminished as clusters move from nearly planar to three-dimensional structures. The prism, cage, and bag clusters can have local water stabilities differing up to 5 kcal mol–1 as a result of mixed cooperative and anticooperative interactions. At the atomic level, in many cases a water may have a largely stabilized oxygen atom but the net water stability will be diminished due to strong destabilization of the water’s hydrogen atoms. Analysis of bond critical point (BCP) electron densities shows that the reduced cooperativity results in a decrease in hydrogen bond strength and an increase in covalent bond strength, most evident in the prism. The chair, with the greatest cooperativity, has the largest average electron density at the BCP per hydrogen bond, whereas the cage has the largest total value for BCP density at all hydrogen bonds. The cage also has the second largest value (after the prism) for covalent bond critical point densities and an oxygen–oxygen BCP which may factor into the experimentally observed stability of the structure.
doi_str_mv 10.1021/jp407371c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753485548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753485548</sourcerecordid><originalsourceid>FETCH-LOGICAL-a411t-1229e9e27917912cecc92685fa3e8213512f0c2ecf5b436afdcf0d5ac199f72c3</originalsourceid><addsrcrecordid>eNqF0U2LFDEQBuAgivuhB_-A5CLooTVVSbo73naHXUcYUFDxJE0mXVkydHfapEecf29kx92LsBCoUDxUQb2MvQDxFgTCu92sRCMbcI_YKWgUlUbQj8tftKbStTQn7CznnRACJKqn7ASVqBsw7Sn7sT70Kd7QxC_j1PNVjDMlu4RfYTnwMPHvdqHE1_TbjpTye36xxDE4fjVRujnwz6U3kyucePR8E50d-JfFbsMQlkD5GXvi7ZDp-bGes2_XV19X62rz6cPH1cWmsgpgqQDRkCFsDJSHjpwzWLfaW0ktgtSAXjgk5_VWydr63nnRa-vAGN-gk-fs9e3cOcWfe8pLN4bsaBjsRHGfO2i0VK3Wqn2Y6hrrWotaPEyVkgpRoCr0zS11KeacyHdzCqNNhw5E9zej7i6jYl8ex-63I_V38l8oBbw6ApvLQX2ykwv53jWt0WjUvbMud7u4T1O58X8W_gF1-6PR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443422024</pqid></control><display><type>article</type><title>Hydrogen Bond Cooperativity in Water Hexamers: Atomic Energy Perspective of Local Stabilities</title><source>ACS Publications</source><creator>Albrecht, Laura ; Chowdhury, Saptarshi ; Boyd, Russell J.</creator><creatorcontrib>Albrecht, Laura ; Chowdhury, Saptarshi ; Boyd, Russell J.</creatorcontrib><description>Atomic energies are used to describe local stability in eight low-lying water hexamers: prism, cage, boat 1, boat 2, bag, chair, book 1, and book 2. The energies are evaluated using the quantum theory of atoms in molecules (QTAIM) at MP2/aug-cc-pVTZ geometries. It is found that the simple, stabilizing cooperativity observed in linear hydrogen-bonded water systems is diminished as clusters move from nearly planar to three-dimensional structures. The prism, cage, and bag clusters can have local water stabilities differing up to 5 kcal mol–1 as a result of mixed cooperative and anticooperative interactions. At the atomic level, in many cases a water may have a largely stabilized oxygen atom but the net water stability will be diminished due to strong destabilization of the water’s hydrogen atoms. Analysis of bond critical point (BCP) electron densities shows that the reduced cooperativity results in a decrease in hydrogen bond strength and an increase in covalent bond strength, most evident in the prism. The chair, with the greatest cooperativity, has the largest average electron density at the BCP per hydrogen bond, whereas the cage has the largest total value for BCP density at all hydrogen bonds. The cage also has the second largest value (after the prism) for covalent bond critical point densities and an oxygen–oxygen BCP which may factor into the experimentally observed stability of the structure.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp407371c</identifier><identifier>PMID: 24067198</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Atomic and molecular clusters ; Atomic and molecular physics ; Cage ; Clusters ; Covalent bonds ; Density ; Exact sciences and technology ; Hydrogen bonds ; Nuclear power generation ; Physics ; Prisms ; Stability ; Studies of special atoms, molecules and their ions; clusters</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2013-10, Vol.117 (41), p.10790-10799</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a411t-1229e9e27917912cecc92685fa3e8213512f0c2ecf5b436afdcf0d5ac199f72c3</citedby><cites>FETCH-LOGICAL-a411t-1229e9e27917912cecc92685fa3e8213512f0c2ecf5b436afdcf0d5ac199f72c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp407371c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp407371c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27895294$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24067198$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Albrecht, Laura</creatorcontrib><creatorcontrib>Chowdhury, Saptarshi</creatorcontrib><creatorcontrib>Boyd, Russell J.</creatorcontrib><title>Hydrogen Bond Cooperativity in Water Hexamers: Atomic Energy Perspective of Local Stabilities</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Atomic energies are used to describe local stability in eight low-lying water hexamers: prism, cage, boat 1, boat 2, bag, chair, book 1, and book 2. The energies are evaluated using the quantum theory of atoms in molecules (QTAIM) at MP2/aug-cc-pVTZ geometries. It is found that the simple, stabilizing cooperativity observed in linear hydrogen-bonded water systems is diminished as clusters move from nearly planar to three-dimensional structures. The prism, cage, and bag clusters can have local water stabilities differing up to 5 kcal mol–1 as a result of mixed cooperative and anticooperative interactions. At the atomic level, in many cases a water may have a largely stabilized oxygen atom but the net water stability will be diminished due to strong destabilization of the water’s hydrogen atoms. Analysis of bond critical point (BCP) electron densities shows that the reduced cooperativity results in a decrease in hydrogen bond strength and an increase in covalent bond strength, most evident in the prism. The chair, with the greatest cooperativity, has the largest average electron density at the BCP per hydrogen bond, whereas the cage has the largest total value for BCP density at all hydrogen bonds. The cage also has the second largest value (after the prism) for covalent bond critical point densities and an oxygen–oxygen BCP which may factor into the experimentally observed stability of the structure.</description><subject>Atomic and molecular clusters</subject><subject>Atomic and molecular physics</subject><subject>Cage</subject><subject>Clusters</subject><subject>Covalent bonds</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Hydrogen bonds</subject><subject>Nuclear power generation</subject><subject>Physics</subject><subject>Prisms</subject><subject>Stability</subject><subject>Studies of special atoms, molecules and their ions; clusters</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0U2LFDEQBuAgivuhB_-A5CLooTVVSbo73naHXUcYUFDxJE0mXVkydHfapEecf29kx92LsBCoUDxUQb2MvQDxFgTCu92sRCMbcI_YKWgUlUbQj8tftKbStTQn7CznnRACJKqn7ASVqBsw7Sn7sT70Kd7QxC_j1PNVjDMlu4RfYTnwMPHvdqHE1_TbjpTye36xxDE4fjVRujnwz6U3kyucePR8E50d-JfFbsMQlkD5GXvi7ZDp-bGes2_XV19X62rz6cPH1cWmsgpgqQDRkCFsDJSHjpwzWLfaW0ktgtSAXjgk5_VWydr63nnRa-vAGN-gk-fs9e3cOcWfe8pLN4bsaBjsRHGfO2i0VK3Wqn2Y6hrrWotaPEyVkgpRoCr0zS11KeacyHdzCqNNhw5E9zej7i6jYl8ex-63I_V38l8oBbw6ApvLQX2ykwv53jWt0WjUvbMud7u4T1O58X8W_gF1-6PR</recordid><startdate>20131017</startdate><enddate>20131017</enddate><creator>Albrecht, Laura</creator><creator>Chowdhury, Saptarshi</creator><creator>Boyd, Russell J.</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131017</creationdate><title>Hydrogen Bond Cooperativity in Water Hexamers: Atomic Energy Perspective of Local Stabilities</title><author>Albrecht, Laura ; Chowdhury, Saptarshi ; Boyd, Russell J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a411t-1229e9e27917912cecc92685fa3e8213512f0c2ecf5b436afdcf0d5ac199f72c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atomic and molecular clusters</topic><topic>Atomic and molecular physics</topic><topic>Cage</topic><topic>Clusters</topic><topic>Covalent bonds</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Hydrogen bonds</topic><topic>Nuclear power generation</topic><topic>Physics</topic><topic>Prisms</topic><topic>Stability</topic><topic>Studies of special atoms, molecules and their ions; clusters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albrecht, Laura</creatorcontrib><creatorcontrib>Chowdhury, Saptarshi</creatorcontrib><creatorcontrib>Boyd, Russell J.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albrecht, Laura</au><au>Chowdhury, Saptarshi</au><au>Boyd, Russell J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen Bond Cooperativity in Water Hexamers: Atomic Energy Perspective of Local Stabilities</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2013-10-17</date><risdate>2013</risdate><volume>117</volume><issue>41</issue><spage>10790</spage><epage>10799</epage><pages>10790-10799</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Atomic energies are used to describe local stability in eight low-lying water hexamers: prism, cage, boat 1, boat 2, bag, chair, book 1, and book 2. The energies are evaluated using the quantum theory of atoms in molecules (QTAIM) at MP2/aug-cc-pVTZ geometries. It is found that the simple, stabilizing cooperativity observed in linear hydrogen-bonded water systems is diminished as clusters move from nearly planar to three-dimensional structures. The prism, cage, and bag clusters can have local water stabilities differing up to 5 kcal mol–1 as a result of mixed cooperative and anticooperative interactions. At the atomic level, in many cases a water may have a largely stabilized oxygen atom but the net water stability will be diminished due to strong destabilization of the water’s hydrogen atoms. Analysis of bond critical point (BCP) electron densities shows that the reduced cooperativity results in a decrease in hydrogen bond strength and an increase in covalent bond strength, most evident in the prism. The chair, with the greatest cooperativity, has the largest average electron density at the BCP per hydrogen bond, whereas the cage has the largest total value for BCP density at all hydrogen bonds. The cage also has the second largest value (after the prism) for covalent bond critical point densities and an oxygen–oxygen BCP which may factor into the experimentally observed stability of the structure.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24067198</pmid><doi>10.1021/jp407371c</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2013-10, Vol.117 (41), p.10790-10799
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_1753485548
source ACS Publications
subjects Atomic and molecular clusters
Atomic and molecular physics
Cage
Clusters
Covalent bonds
Density
Exact sciences and technology
Hydrogen bonds
Nuclear power generation
Physics
Prisms
Stability
Studies of special atoms, molecules and their ions
clusters
title Hydrogen Bond Cooperativity in Water Hexamers: Atomic Energy Perspective of Local Stabilities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20Bond%20Cooperativity%20in%20Water%20Hexamers:%20Atomic%20Energy%20Perspective%20of%20Local%20Stabilities&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Albrecht,%20Laura&rft.date=2013-10-17&rft.volume=117&rft.issue=41&rft.spage=10790&rft.epage=10799&rft.pages=10790-10799&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp407371c&rft_dat=%3Cproquest_cross%3E1753485548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443422024&rft_id=info:pmid/24067198&rfr_iscdi=true