Hydrogen Bond Cooperativity in Water Hexamers: Atomic Energy Perspective of Local Stabilities
Atomic energies are used to describe local stability in eight low-lying water hexamers: prism, cage, boat 1, boat 2, bag, chair, book 1, and book 2. The energies are evaluated using the quantum theory of atoms in molecules (QTAIM) at MP2/aug-cc-pVTZ geometries. It is found that the simple, stabilizi...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2013-10, Vol.117 (41), p.10790-10799 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10799 |
---|---|
container_issue | 41 |
container_start_page | 10790 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 117 |
creator | Albrecht, Laura Chowdhury, Saptarshi Boyd, Russell J. |
description | Atomic energies are used to describe local stability in eight low-lying water hexamers: prism, cage, boat 1, boat 2, bag, chair, book 1, and book 2. The energies are evaluated using the quantum theory of atoms in molecules (QTAIM) at MP2/aug-cc-pVTZ geometries. It is found that the simple, stabilizing cooperativity observed in linear hydrogen-bonded water systems is diminished as clusters move from nearly planar to three-dimensional structures. The prism, cage, and bag clusters can have local water stabilities differing up to 5 kcal mol–1 as a result of mixed cooperative and anticooperative interactions. At the atomic level, in many cases a water may have a largely stabilized oxygen atom but the net water stability will be diminished due to strong destabilization of the water’s hydrogen atoms. Analysis of bond critical point (BCP) electron densities shows that the reduced cooperativity results in a decrease in hydrogen bond strength and an increase in covalent bond strength, most evident in the prism. The chair, with the greatest cooperativity, has the largest average electron density at the BCP per hydrogen bond, whereas the cage has the largest total value for BCP density at all hydrogen bonds. The cage also has the second largest value (after the prism) for covalent bond critical point densities and an oxygen–oxygen BCP which may factor into the experimentally observed stability of the structure. |
doi_str_mv | 10.1021/jp407371c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753485548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753485548</sourcerecordid><originalsourceid>FETCH-LOGICAL-a411t-1229e9e27917912cecc92685fa3e8213512f0c2ecf5b436afdcf0d5ac199f72c3</originalsourceid><addsrcrecordid>eNqF0U2LFDEQBuAgivuhB_-A5CLooTVVSbo73naHXUcYUFDxJE0mXVkydHfapEecf29kx92LsBCoUDxUQb2MvQDxFgTCu92sRCMbcI_YKWgUlUbQj8tftKbStTQn7CznnRACJKqn7ASVqBsw7Sn7sT70Kd7QxC_j1PNVjDMlu4RfYTnwMPHvdqHE1_TbjpTye36xxDE4fjVRujnwz6U3kyucePR8E50d-JfFbsMQlkD5GXvi7ZDp-bGes2_XV19X62rz6cPH1cWmsgpgqQDRkCFsDJSHjpwzWLfaW0ktgtSAXjgk5_VWydr63nnRa-vAGN-gk-fs9e3cOcWfe8pLN4bsaBjsRHGfO2i0VK3Wqn2Y6hrrWotaPEyVkgpRoCr0zS11KeacyHdzCqNNhw5E9zej7i6jYl8ex-63I_V38l8oBbw6ApvLQX2ykwv53jWt0WjUvbMud7u4T1O58X8W_gF1-6PR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443422024</pqid></control><display><type>article</type><title>Hydrogen Bond Cooperativity in Water Hexamers: Atomic Energy Perspective of Local Stabilities</title><source>ACS Publications</source><creator>Albrecht, Laura ; Chowdhury, Saptarshi ; Boyd, Russell J.</creator><creatorcontrib>Albrecht, Laura ; Chowdhury, Saptarshi ; Boyd, Russell J.</creatorcontrib><description>Atomic energies are used to describe local stability in eight low-lying water hexamers: prism, cage, boat 1, boat 2, bag, chair, book 1, and book 2. The energies are evaluated using the quantum theory of atoms in molecules (QTAIM) at MP2/aug-cc-pVTZ geometries. It is found that the simple, stabilizing cooperativity observed in linear hydrogen-bonded water systems is diminished as clusters move from nearly planar to three-dimensional structures. The prism, cage, and bag clusters can have local water stabilities differing up to 5 kcal mol–1 as a result of mixed cooperative and anticooperative interactions. At the atomic level, in many cases a water may have a largely stabilized oxygen atom but the net water stability will be diminished due to strong destabilization of the water’s hydrogen atoms. Analysis of bond critical point (BCP) electron densities shows that the reduced cooperativity results in a decrease in hydrogen bond strength and an increase in covalent bond strength, most evident in the prism. The chair, with the greatest cooperativity, has the largest average electron density at the BCP per hydrogen bond, whereas the cage has the largest total value for BCP density at all hydrogen bonds. The cage also has the second largest value (after the prism) for covalent bond critical point densities and an oxygen–oxygen BCP which may factor into the experimentally observed stability of the structure.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp407371c</identifier><identifier>PMID: 24067198</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Atomic and molecular clusters ; Atomic and molecular physics ; Cage ; Clusters ; Covalent bonds ; Density ; Exact sciences and technology ; Hydrogen bonds ; Nuclear power generation ; Physics ; Prisms ; Stability ; Studies of special atoms, molecules and their ions; clusters</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2013-10, Vol.117 (41), p.10790-10799</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a411t-1229e9e27917912cecc92685fa3e8213512f0c2ecf5b436afdcf0d5ac199f72c3</citedby><cites>FETCH-LOGICAL-a411t-1229e9e27917912cecc92685fa3e8213512f0c2ecf5b436afdcf0d5ac199f72c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp407371c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp407371c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27895294$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24067198$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Albrecht, Laura</creatorcontrib><creatorcontrib>Chowdhury, Saptarshi</creatorcontrib><creatorcontrib>Boyd, Russell J.</creatorcontrib><title>Hydrogen Bond Cooperativity in Water Hexamers: Atomic Energy Perspective of Local Stabilities</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Atomic energies are used to describe local stability in eight low-lying water hexamers: prism, cage, boat 1, boat 2, bag, chair, book 1, and book 2. The energies are evaluated using the quantum theory of atoms in molecules (QTAIM) at MP2/aug-cc-pVTZ geometries. It is found that the simple, stabilizing cooperativity observed in linear hydrogen-bonded water systems is diminished as clusters move from nearly planar to three-dimensional structures. The prism, cage, and bag clusters can have local water stabilities differing up to 5 kcal mol–1 as a result of mixed cooperative and anticooperative interactions. At the atomic level, in many cases a water may have a largely stabilized oxygen atom but the net water stability will be diminished due to strong destabilization of the water’s hydrogen atoms. Analysis of bond critical point (BCP) electron densities shows that the reduced cooperativity results in a decrease in hydrogen bond strength and an increase in covalent bond strength, most evident in the prism. The chair, with the greatest cooperativity, has the largest average electron density at the BCP per hydrogen bond, whereas the cage has the largest total value for BCP density at all hydrogen bonds. The cage also has the second largest value (after the prism) for covalent bond critical point densities and an oxygen–oxygen BCP which may factor into the experimentally observed stability of the structure.</description><subject>Atomic and molecular clusters</subject><subject>Atomic and molecular physics</subject><subject>Cage</subject><subject>Clusters</subject><subject>Covalent bonds</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Hydrogen bonds</subject><subject>Nuclear power generation</subject><subject>Physics</subject><subject>Prisms</subject><subject>Stability</subject><subject>Studies of special atoms, molecules and their ions; clusters</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0U2LFDEQBuAgivuhB_-A5CLooTVVSbo73naHXUcYUFDxJE0mXVkydHfapEecf29kx92LsBCoUDxUQb2MvQDxFgTCu92sRCMbcI_YKWgUlUbQj8tftKbStTQn7CznnRACJKqn7ASVqBsw7Sn7sT70Kd7QxC_j1PNVjDMlu4RfYTnwMPHvdqHE1_TbjpTye36xxDE4fjVRujnwz6U3kyucePR8E50d-JfFbsMQlkD5GXvi7ZDp-bGes2_XV19X62rz6cPH1cWmsgpgqQDRkCFsDJSHjpwzWLfaW0ktgtSAXjgk5_VWydr63nnRa-vAGN-gk-fs9e3cOcWfe8pLN4bsaBjsRHGfO2i0VK3Wqn2Y6hrrWotaPEyVkgpRoCr0zS11KeacyHdzCqNNhw5E9zej7i6jYl8ex-63I_V38l8oBbw6ApvLQX2ykwv53jWt0WjUvbMud7u4T1O58X8W_gF1-6PR</recordid><startdate>20131017</startdate><enddate>20131017</enddate><creator>Albrecht, Laura</creator><creator>Chowdhury, Saptarshi</creator><creator>Boyd, Russell J.</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131017</creationdate><title>Hydrogen Bond Cooperativity in Water Hexamers: Atomic Energy Perspective of Local Stabilities</title><author>Albrecht, Laura ; Chowdhury, Saptarshi ; Boyd, Russell J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a411t-1229e9e27917912cecc92685fa3e8213512f0c2ecf5b436afdcf0d5ac199f72c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atomic and molecular clusters</topic><topic>Atomic and molecular physics</topic><topic>Cage</topic><topic>Clusters</topic><topic>Covalent bonds</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Hydrogen bonds</topic><topic>Nuclear power generation</topic><topic>Physics</topic><topic>Prisms</topic><topic>Stability</topic><topic>Studies of special atoms, molecules and their ions; clusters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albrecht, Laura</creatorcontrib><creatorcontrib>Chowdhury, Saptarshi</creatorcontrib><creatorcontrib>Boyd, Russell J.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albrecht, Laura</au><au>Chowdhury, Saptarshi</au><au>Boyd, Russell J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen Bond Cooperativity in Water Hexamers: Atomic Energy Perspective of Local Stabilities</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2013-10-17</date><risdate>2013</risdate><volume>117</volume><issue>41</issue><spage>10790</spage><epage>10799</epage><pages>10790-10799</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Atomic energies are used to describe local stability in eight low-lying water hexamers: prism, cage, boat 1, boat 2, bag, chair, book 1, and book 2. The energies are evaluated using the quantum theory of atoms in molecules (QTAIM) at MP2/aug-cc-pVTZ geometries. It is found that the simple, stabilizing cooperativity observed in linear hydrogen-bonded water systems is diminished as clusters move from nearly planar to three-dimensional structures. The prism, cage, and bag clusters can have local water stabilities differing up to 5 kcal mol–1 as a result of mixed cooperative and anticooperative interactions. At the atomic level, in many cases a water may have a largely stabilized oxygen atom but the net water stability will be diminished due to strong destabilization of the water’s hydrogen atoms. Analysis of bond critical point (BCP) electron densities shows that the reduced cooperativity results in a decrease in hydrogen bond strength and an increase in covalent bond strength, most evident in the prism. The chair, with the greatest cooperativity, has the largest average electron density at the BCP per hydrogen bond, whereas the cage has the largest total value for BCP density at all hydrogen bonds. The cage also has the second largest value (after the prism) for covalent bond critical point densities and an oxygen–oxygen BCP which may factor into the experimentally observed stability of the structure.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24067198</pmid><doi>10.1021/jp407371c</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2013-10, Vol.117 (41), p.10790-10799 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753485548 |
source | ACS Publications |
subjects | Atomic and molecular clusters Atomic and molecular physics Cage Clusters Covalent bonds Density Exact sciences and technology Hydrogen bonds Nuclear power generation Physics Prisms Stability Studies of special atoms, molecules and their ions clusters |
title | Hydrogen Bond Cooperativity in Water Hexamers: Atomic Energy Perspective of Local Stabilities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20Bond%20Cooperativity%20in%20Water%20Hexamers:%20Atomic%20Energy%20Perspective%20of%20Local%20Stabilities&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Albrecht,%20Laura&rft.date=2013-10-17&rft.volume=117&rft.issue=41&rft.spage=10790&rft.epage=10799&rft.pages=10790-10799&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp407371c&rft_dat=%3Cproquest_cross%3E1753485548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443422024&rft_id=info:pmid/24067198&rfr_iscdi=true |