Field-Effect Modulation of Thermoelectric Properties in Multigated Silicon Nanowires

Electric-field-induced charge carriers typically exhibit greater mobility over carriers contributed by chemical dopants and offer a powerful mechanism for thermoelectric power factor enhancement. We fabricate multigated silicon nanowires (Si NWs) and demonstrate significant modulation of electrical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano Lett 2013-11, Vol.13 (11), p.5503-5508
Hauptverfasser: Curtin, Benjamin M, Codecido, Emilio A, Krämer, Stephan, Bowers, John E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5508
container_issue 11
container_start_page 5503
container_title Nano Lett
container_volume 13
creator Curtin, Benjamin M
Codecido, Emilio A
Krämer, Stephan
Bowers, John E
description Electric-field-induced charge carriers typically exhibit greater mobility over carriers contributed by chemical dopants and offer a powerful mechanism for thermoelectric power factor enhancement. We fabricate multigated silicon nanowires (Si NWs) and demonstrate significant modulation of electrical conductivity and the Seebeck coefficient with gate bias. Because of the higher mobility of field-effect charge carriers, we demonstrate that power factor for the gated Si NWs is similar to the highest values reported for n-type Si nanostructures despite charge transport only occurring at the NW surface. Field-effect doping is a promising strategy for optimizing power factor and may result in significant power factor enhancement in smaller diameter Si NWs where high average carrier densities can be obtained with induced surface charge.
doi_str_mv 10.1021/nl403079a
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753484991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753484991</sourcerecordid><originalsourceid>FETCH-LOGICAL-a471t-1165e04bf34a59022a606d531c8210cc93a2f899d492c921b96bc42ba31c91043</originalsourceid><addsrcrecordid>eNpt0MtKAzEUBuAgipfqwheQQRB0MZrbXM5SSr2AN7CuQyaTsZF0UpMM4tsbaW03rhLId_4cfoSOCb4kmJKr3nLMcAVyC-2TguG8BKDb63vN99BBCB8YY2AF3kV7lBNWFzXdR9Mbo22bT7pOq5g9unawMhrXZ67LpjPt507b9OKNyl68W2gfjQ6Z6bPHwUbzLqNus1djjUojT7J3X8brcIh2OmmDPlqdI_R2M5mO7_KH59v78fVDLnlFYk5IWWjMm45xWQCmVJa4bAtGVE0JVgqYpF0N0HKgCihpoGwUp41MAgjmbIROl7kuRCOCMlGrWdqkTxuLlI6hIAmdL9HCu89BhyjmJihtrey1G4IgVcF4zQF-6cWSKu9C8LoTC2_m0n8LgsVv02LddLInq9ihmet2Lf-qTeBsBWRQ0nZe9sqEjasAalZXGydVEB9u8H2q7J8PfwBz1pAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753484991</pqid></control><display><type>article</type><title>Field-Effect Modulation of Thermoelectric Properties in Multigated Silicon Nanowires</title><source>ACS Publications</source><source>MEDLINE</source><creator>Curtin, Benjamin M ; Codecido, Emilio A ; Krämer, Stephan ; Bowers, John E</creator><creatorcontrib>Curtin, Benjamin M ; Codecido, Emilio A ; Krämer, Stephan ; Bowers, John E ; Center for Energy Efficient Materials (CEEM) ; Energy Frontier Research Centers (EFRC)</creatorcontrib><description>Electric-field-induced charge carriers typically exhibit greater mobility over carriers contributed by chemical dopants and offer a powerful mechanism for thermoelectric power factor enhancement. We fabricate multigated silicon nanowires (Si NWs) and demonstrate significant modulation of electrical conductivity and the Seebeck coefficient with gate bias. Because of the higher mobility of field-effect charge carriers, we demonstrate that power factor for the gated Si NWs is similar to the highest values reported for n-type Si nanostructures despite charge transport only occurring at the NW surface. Field-effect doping is a promising strategy for optimizing power factor and may result in significant power factor enhancement in smaller diameter Si NWs where high average carrier densities can be obtained with induced surface charge.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl403079a</identifier><identifier>PMID: 24138582</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Carrier density ; Charge carriers ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electric Conductivity ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in multilayers, nanoscale materials and structures ; Exact sciences and technology ; Germanium - chemistry ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Modulation ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Nanostructures - chemistry ; Nanotechnology ; Nanowires ; Nanowires - chemistry ; Particle Size ; Physics ; Power factor ; Quantum wires ; Silicon ; Silicon - chemistry ; solar (photovoltaic), solid state lighting, phonons, thermoelectric, bio-inspired, energy storage (including batteries and capacitors), electrodes - solar, defects, charge transport, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) ; Surface Properties ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thermoelectricity</subject><ispartof>Nano Lett, 2013-11, Vol.13 (11), p.5503-5508</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a471t-1165e04bf34a59022a606d531c8210cc93a2f899d492c921b96bc42ba31c91043</citedby><cites>FETCH-LOGICAL-a471t-1165e04bf34a59022a606d531c8210cc93a2f899d492c921b96bc42ba31c91043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl403079a$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl403079a$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27998387$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24138582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1160951$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Curtin, Benjamin M</creatorcontrib><creatorcontrib>Codecido, Emilio A</creatorcontrib><creatorcontrib>Krämer, Stephan</creatorcontrib><creatorcontrib>Bowers, John E</creatorcontrib><creatorcontrib>Center for Energy Efficient Materials (CEEM)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><title>Field-Effect Modulation of Thermoelectric Properties in Multigated Silicon Nanowires</title><title>Nano Lett</title><addtitle>Nano Lett</addtitle><description>Electric-field-induced charge carriers typically exhibit greater mobility over carriers contributed by chemical dopants and offer a powerful mechanism for thermoelectric power factor enhancement. We fabricate multigated silicon nanowires (Si NWs) and demonstrate significant modulation of electrical conductivity and the Seebeck coefficient with gate bias. Because of the higher mobility of field-effect charge carriers, we demonstrate that power factor for the gated Si NWs is similar to the highest values reported for n-type Si nanostructures despite charge transport only occurring at the NW surface. Field-effect doping is a promising strategy for optimizing power factor and may result in significant power factor enhancement in smaller diameter Si NWs where high average carrier densities can be obtained with induced surface charge.</description><subject>Carrier density</subject><subject>Charge carriers</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electric Conductivity</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in multilayers, nanoscale materials and structures</subject><subject>Exact sciences and technology</subject><subject>Germanium - chemistry</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Modulation</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Nanowires - chemistry</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Power factor</subject><subject>Quantum wires</subject><subject>Silicon</subject><subject>Silicon - chemistry</subject><subject>solar (photovoltaic), solid state lighting, phonons, thermoelectric, bio-inspired, energy storage (including batteries and capacitors), electrodes - solar, defects, charge transport, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><subject>Surface Properties</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thermoelectricity</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0MtKAzEUBuAgipfqwheQQRB0MZrbXM5SSr2AN7CuQyaTsZF0UpMM4tsbaW03rhLId_4cfoSOCb4kmJKr3nLMcAVyC-2TguG8BKDb63vN99BBCB8YY2AF3kV7lBNWFzXdR9Mbo22bT7pOq5g9unawMhrXZ67LpjPt507b9OKNyl68W2gfjQ6Z6bPHwUbzLqNus1djjUojT7J3X8brcIh2OmmDPlqdI_R2M5mO7_KH59v78fVDLnlFYk5IWWjMm45xWQCmVJa4bAtGVE0JVgqYpF0N0HKgCihpoGwUp41MAgjmbIROl7kuRCOCMlGrWdqkTxuLlI6hIAmdL9HCu89BhyjmJihtrey1G4IgVcF4zQF-6cWSKu9C8LoTC2_m0n8LgsVv02LddLInq9ihmet2Lf-qTeBsBWRQ0nZe9sqEjasAalZXGydVEB9u8H2q7J8PfwBz1pAQ</recordid><startdate>20131113</startdate><enddate>20131113</enddate><creator>Curtin, Benjamin M</creator><creator>Codecido, Emilio A</creator><creator>Krämer, Stephan</creator><creator>Bowers, John E</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20131113</creationdate><title>Field-Effect Modulation of Thermoelectric Properties in Multigated Silicon Nanowires</title><author>Curtin, Benjamin M ; Codecido, Emilio A ; Krämer, Stephan ; Bowers, John E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a471t-1165e04bf34a59022a606d531c8210cc93a2f899d492c921b96bc42ba31c91043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Carrier density</topic><topic>Charge carriers</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electric Conductivity</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in multilayers, nanoscale materials and structures</topic><topic>Exact sciences and technology</topic><topic>Germanium - chemistry</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Modulation</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Nanowires - chemistry</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Power factor</topic><topic>Quantum wires</topic><topic>Silicon</topic><topic>Silicon - chemistry</topic><topic>solar (photovoltaic), solid state lighting, phonons, thermoelectric, bio-inspired, energy storage (including batteries and capacitors), electrodes - solar, defects, charge transport, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</topic><topic>Surface Properties</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curtin, Benjamin M</creatorcontrib><creatorcontrib>Codecido, Emilio A</creatorcontrib><creatorcontrib>Krämer, Stephan</creatorcontrib><creatorcontrib>Bowers, John E</creatorcontrib><creatorcontrib>Center for Energy Efficient Materials (CEEM)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Nano Lett</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curtin, Benjamin M</au><au>Codecido, Emilio A</au><au>Krämer, Stephan</au><au>Bowers, John E</au><aucorp>Center for Energy Efficient Materials (CEEM)</aucorp><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field-Effect Modulation of Thermoelectric Properties in Multigated Silicon Nanowires</atitle><jtitle>Nano Lett</jtitle><addtitle>Nano Lett</addtitle><date>2013-11-13</date><risdate>2013</risdate><volume>13</volume><issue>11</issue><spage>5503</spage><epage>5508</epage><pages>5503-5508</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Electric-field-induced charge carriers typically exhibit greater mobility over carriers contributed by chemical dopants and offer a powerful mechanism for thermoelectric power factor enhancement. We fabricate multigated silicon nanowires (Si NWs) and demonstrate significant modulation of electrical conductivity and the Seebeck coefficient with gate bias. Because of the higher mobility of field-effect charge carriers, we demonstrate that power factor for the gated Si NWs is similar to the highest values reported for n-type Si nanostructures despite charge transport only occurring at the NW surface. Field-effect doping is a promising strategy for optimizing power factor and may result in significant power factor enhancement in smaller diameter Si NWs where high average carrier densities can be obtained with induced surface charge.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24138582</pmid><doi>10.1021/nl403079a</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano Lett, 2013-11, Vol.13 (11), p.5503-5508
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1753484991
source ACS Publications; MEDLINE
subjects Carrier density
Charge carriers
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Electric Conductivity
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport in multilayers, nanoscale materials and structures
Exact sciences and technology
Germanium - chemistry
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Materials science
Modulation
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Nanostructures - chemistry
Nanotechnology
Nanowires
Nanowires - chemistry
Particle Size
Physics
Power factor
Quantum wires
Silicon
Silicon - chemistry
solar (photovoltaic), solid state lighting, phonons, thermoelectric, bio-inspired, energy storage (including batteries and capacitors), electrodes - solar, defects, charge transport, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)
Surface Properties
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thermoelectricity
title Field-Effect Modulation of Thermoelectric Properties in Multigated Silicon Nanowires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field-Effect%20Modulation%20of%20Thermoelectric%20Properties%20in%20Multigated%20Silicon%20Nanowires&rft.jtitle=Nano%20Lett&rft.au=Curtin,%20Benjamin%20M&rft.aucorp=Center%20for%20Energy%20Efficient%20Materials%20(CEEM)&rft.date=2013-11-13&rft.volume=13&rft.issue=11&rft.spage=5503&rft.epage=5508&rft.pages=5503-5508&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl403079a&rft_dat=%3Cproquest_osti_%3E1753484991%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753484991&rft_id=info:pmid/24138582&rfr_iscdi=true