Field-Effect Modulation of Thermoelectric Properties in Multigated Silicon Nanowires
Electric-field-induced charge carriers typically exhibit greater mobility over carriers contributed by chemical dopants and offer a powerful mechanism for thermoelectric power factor enhancement. We fabricate multigated silicon nanowires (Si NWs) and demonstrate significant modulation of electrical...
Gespeichert in:
Veröffentlicht in: | Nano Lett 2013-11, Vol.13 (11), p.5503-5508 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5508 |
---|---|
container_issue | 11 |
container_start_page | 5503 |
container_title | Nano Lett |
container_volume | 13 |
creator | Curtin, Benjamin M Codecido, Emilio A Krämer, Stephan Bowers, John E |
description | Electric-field-induced charge carriers typically exhibit greater mobility over carriers contributed by chemical dopants and offer a powerful mechanism for thermoelectric power factor enhancement. We fabricate multigated silicon nanowires (Si NWs) and demonstrate significant modulation of electrical conductivity and the Seebeck coefficient with gate bias. Because of the higher mobility of field-effect charge carriers, we demonstrate that power factor for the gated Si NWs is similar to the highest values reported for n-type Si nanostructures despite charge transport only occurring at the NW surface. Field-effect doping is a promising strategy for optimizing power factor and may result in significant power factor enhancement in smaller diameter Si NWs where high average carrier densities can be obtained with induced surface charge. |
doi_str_mv | 10.1021/nl403079a |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753484991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753484991</sourcerecordid><originalsourceid>FETCH-LOGICAL-a471t-1165e04bf34a59022a606d531c8210cc93a2f899d492c921b96bc42ba31c91043</originalsourceid><addsrcrecordid>eNpt0MtKAzEUBuAgipfqwheQQRB0MZrbXM5SSr2AN7CuQyaTsZF0UpMM4tsbaW03rhLId_4cfoSOCb4kmJKr3nLMcAVyC-2TguG8BKDb63vN99BBCB8YY2AF3kV7lBNWFzXdR9Mbo22bT7pOq5g9unawMhrXZ67LpjPt507b9OKNyl68W2gfjQ6Z6bPHwUbzLqNus1djjUojT7J3X8brcIh2OmmDPlqdI_R2M5mO7_KH59v78fVDLnlFYk5IWWjMm45xWQCmVJa4bAtGVE0JVgqYpF0N0HKgCihpoGwUp41MAgjmbIROl7kuRCOCMlGrWdqkTxuLlI6hIAmdL9HCu89BhyjmJihtrey1G4IgVcF4zQF-6cWSKu9C8LoTC2_m0n8LgsVv02LddLInq9ihmet2Lf-qTeBsBWRQ0nZe9sqEjasAalZXGydVEB9u8H2q7J8PfwBz1pAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753484991</pqid></control><display><type>article</type><title>Field-Effect Modulation of Thermoelectric Properties in Multigated Silicon Nanowires</title><source>ACS Publications</source><source>MEDLINE</source><creator>Curtin, Benjamin M ; Codecido, Emilio A ; Krämer, Stephan ; Bowers, John E</creator><creatorcontrib>Curtin, Benjamin M ; Codecido, Emilio A ; Krämer, Stephan ; Bowers, John E ; Center for Energy Efficient Materials (CEEM) ; Energy Frontier Research Centers (EFRC)</creatorcontrib><description>Electric-field-induced charge carriers typically exhibit greater mobility over carriers contributed by chemical dopants and offer a powerful mechanism for thermoelectric power factor enhancement. We fabricate multigated silicon nanowires (Si NWs) and demonstrate significant modulation of electrical conductivity and the Seebeck coefficient with gate bias. Because of the higher mobility of field-effect charge carriers, we demonstrate that power factor for the gated Si NWs is similar to the highest values reported for n-type Si nanostructures despite charge transport only occurring at the NW surface. Field-effect doping is a promising strategy for optimizing power factor and may result in significant power factor enhancement in smaller diameter Si NWs where high average carrier densities can be obtained with induced surface charge.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl403079a</identifier><identifier>PMID: 24138582</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Carrier density ; Charge carriers ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electric Conductivity ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in multilayers, nanoscale materials and structures ; Exact sciences and technology ; Germanium - chemistry ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Modulation ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Nanostructures - chemistry ; Nanotechnology ; Nanowires ; Nanowires - chemistry ; Particle Size ; Physics ; Power factor ; Quantum wires ; Silicon ; Silicon - chemistry ; solar (photovoltaic), solid state lighting, phonons, thermoelectric, bio-inspired, energy storage (including batteries and capacitors), electrodes - solar, defects, charge transport, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) ; Surface Properties ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thermoelectricity</subject><ispartof>Nano Lett, 2013-11, Vol.13 (11), p.5503-5508</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a471t-1165e04bf34a59022a606d531c8210cc93a2f899d492c921b96bc42ba31c91043</citedby><cites>FETCH-LOGICAL-a471t-1165e04bf34a59022a606d531c8210cc93a2f899d492c921b96bc42ba31c91043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl403079a$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl403079a$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27998387$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24138582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1160951$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Curtin, Benjamin M</creatorcontrib><creatorcontrib>Codecido, Emilio A</creatorcontrib><creatorcontrib>Krämer, Stephan</creatorcontrib><creatorcontrib>Bowers, John E</creatorcontrib><creatorcontrib>Center for Energy Efficient Materials (CEEM)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><title>Field-Effect Modulation of Thermoelectric Properties in Multigated Silicon Nanowires</title><title>Nano Lett</title><addtitle>Nano Lett</addtitle><description>Electric-field-induced charge carriers typically exhibit greater mobility over carriers contributed by chemical dopants and offer a powerful mechanism for thermoelectric power factor enhancement. We fabricate multigated silicon nanowires (Si NWs) and demonstrate significant modulation of electrical conductivity and the Seebeck coefficient with gate bias. Because of the higher mobility of field-effect charge carriers, we demonstrate that power factor for the gated Si NWs is similar to the highest values reported for n-type Si nanostructures despite charge transport only occurring at the NW surface. Field-effect doping is a promising strategy for optimizing power factor and may result in significant power factor enhancement in smaller diameter Si NWs where high average carrier densities can be obtained with induced surface charge.</description><subject>Carrier density</subject><subject>Charge carriers</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electric Conductivity</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in multilayers, nanoscale materials and structures</subject><subject>Exact sciences and technology</subject><subject>Germanium - chemistry</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Modulation</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Nanowires - chemistry</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Power factor</subject><subject>Quantum wires</subject><subject>Silicon</subject><subject>Silicon - chemistry</subject><subject>solar (photovoltaic), solid state lighting, phonons, thermoelectric, bio-inspired, energy storage (including batteries and capacitors), electrodes - solar, defects, charge transport, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><subject>Surface Properties</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thermoelectricity</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0MtKAzEUBuAgipfqwheQQRB0MZrbXM5SSr2AN7CuQyaTsZF0UpMM4tsbaW03rhLId_4cfoSOCb4kmJKr3nLMcAVyC-2TguG8BKDb63vN99BBCB8YY2AF3kV7lBNWFzXdR9Mbo22bT7pOq5g9unawMhrXZ67LpjPt507b9OKNyl68W2gfjQ6Z6bPHwUbzLqNus1djjUojT7J3X8brcIh2OmmDPlqdI_R2M5mO7_KH59v78fVDLnlFYk5IWWjMm45xWQCmVJa4bAtGVE0JVgqYpF0N0HKgCihpoGwUp41MAgjmbIROl7kuRCOCMlGrWdqkTxuLlI6hIAmdL9HCu89BhyjmJihtrey1G4IgVcF4zQF-6cWSKu9C8LoTC2_m0n8LgsVv02LddLInq9ihmet2Lf-qTeBsBWRQ0nZe9sqEjasAalZXGydVEB9u8H2q7J8PfwBz1pAQ</recordid><startdate>20131113</startdate><enddate>20131113</enddate><creator>Curtin, Benjamin M</creator><creator>Codecido, Emilio A</creator><creator>Krämer, Stephan</creator><creator>Bowers, John E</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20131113</creationdate><title>Field-Effect Modulation of Thermoelectric Properties in Multigated Silicon Nanowires</title><author>Curtin, Benjamin M ; Codecido, Emilio A ; Krämer, Stephan ; Bowers, John E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a471t-1165e04bf34a59022a606d531c8210cc93a2f899d492c921b96bc42ba31c91043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Carrier density</topic><topic>Charge carriers</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electric Conductivity</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in multilayers, nanoscale materials and structures</topic><topic>Exact sciences and technology</topic><topic>Germanium - chemistry</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Modulation</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Nanowires - chemistry</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Power factor</topic><topic>Quantum wires</topic><topic>Silicon</topic><topic>Silicon - chemistry</topic><topic>solar (photovoltaic), solid state lighting, phonons, thermoelectric, bio-inspired, energy storage (including batteries and capacitors), electrodes - solar, defects, charge transport, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</topic><topic>Surface Properties</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curtin, Benjamin M</creatorcontrib><creatorcontrib>Codecido, Emilio A</creatorcontrib><creatorcontrib>Krämer, Stephan</creatorcontrib><creatorcontrib>Bowers, John E</creatorcontrib><creatorcontrib>Center for Energy Efficient Materials (CEEM)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Nano Lett</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curtin, Benjamin M</au><au>Codecido, Emilio A</au><au>Krämer, Stephan</au><au>Bowers, John E</au><aucorp>Center for Energy Efficient Materials (CEEM)</aucorp><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field-Effect Modulation of Thermoelectric Properties in Multigated Silicon Nanowires</atitle><jtitle>Nano Lett</jtitle><addtitle>Nano Lett</addtitle><date>2013-11-13</date><risdate>2013</risdate><volume>13</volume><issue>11</issue><spage>5503</spage><epage>5508</epage><pages>5503-5508</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Electric-field-induced charge carriers typically exhibit greater mobility over carriers contributed by chemical dopants and offer a powerful mechanism for thermoelectric power factor enhancement. We fabricate multigated silicon nanowires (Si NWs) and demonstrate significant modulation of electrical conductivity and the Seebeck coefficient with gate bias. Because of the higher mobility of field-effect charge carriers, we demonstrate that power factor for the gated Si NWs is similar to the highest values reported for n-type Si nanostructures despite charge transport only occurring at the NW surface. Field-effect doping is a promising strategy for optimizing power factor and may result in significant power factor enhancement in smaller diameter Si NWs where high average carrier densities can be obtained with induced surface charge.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24138582</pmid><doi>10.1021/nl403079a</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano Lett, 2013-11, Vol.13 (11), p.5503-5508 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753484991 |
source | ACS Publications; MEDLINE |
subjects | Carrier density Charge carriers Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Electric Conductivity Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic transport in multilayers, nanoscale materials and structures Exact sciences and technology Germanium - chemistry Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Materials science Modulation Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Nanostructure Nanostructures - chemistry Nanotechnology Nanowires Nanowires - chemistry Particle Size Physics Power factor Quantum wires Silicon Silicon - chemistry solar (photovoltaic), solid state lighting, phonons, thermoelectric, bio-inspired, energy storage (including batteries and capacitors), electrodes - solar, defects, charge transport, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) Surface Properties Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Thermoelectricity |
title | Field-Effect Modulation of Thermoelectric Properties in Multigated Silicon Nanowires |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field-Effect%20Modulation%20of%20Thermoelectric%20Properties%20in%20Multigated%20Silicon%20Nanowires&rft.jtitle=Nano%20Lett&rft.au=Curtin,%20Benjamin%20M&rft.aucorp=Center%20for%20Energy%20Efficient%20Materials%20(CEEM)&rft.date=2013-11-13&rft.volume=13&rft.issue=11&rft.spage=5503&rft.epage=5508&rft.pages=5503-5508&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl403079a&rft_dat=%3Cproquest_osti_%3E1753484991%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753484991&rft_id=info:pmid/24138582&rfr_iscdi=true |