Examining Graphene Field Effect Sensors for Ferroelectric Thin Film Studies

We examine a prototype graphene field effect sensor for the study of the dielectric constant, pyroelectric coefficient, and ferroelectric polarization of 100–300 nm epitaxial (Ba,Sr)TiO3 thin films. Ferroelectric switching induces hysteresis in the resistivity and carrier density of n-layer graphene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2013-09, Vol.13 (9), p.4374-4379
Hauptverfasser: Rajapitamahuni, A, Hoffman, J, Ahn, C. H, Hong, X
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4379
container_issue 9
container_start_page 4374
container_title Nano letters
container_volume 13
creator Rajapitamahuni, A
Hoffman, J
Ahn, C. H
Hong, X
description We examine a prototype graphene field effect sensor for the study of the dielectric constant, pyroelectric coefficient, and ferroelectric polarization of 100–300 nm epitaxial (Ba,Sr)TiO3 thin films. Ferroelectric switching induces hysteresis in the resistivity and carrier density of n-layer graphene (n = 1–5) below 100 K, which competes with an antihysteresis behavior activated by the combined effects of electric field and temperature. We also discuss how the polarization asymmetry and interface charge dynamics affect the electronic properties of graphene.
doi_str_mv 10.1021/nl402204t
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753484471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1432076030</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-33fcb8bbab54b504bc444b7b6cd9d9c3da96ca3f804e995498447fa316b86c253</originalsourceid><addsrcrecordid>eNqF0MtKAzEUBuAgiq3VhS8g2Qi6GM1tLllKaatYcNG6HpJMYlMymZrMgL69U1rbjeAqh_CdCz8A1xg9YETwo3cMEYJYewKGOKUoyTgnp4e6YANwEeMaIcRpis7BgFBOGC3QELxOvkRtvfUfcBbEZqW9hlOrXQUnxmjVwoX2sQkRmibAqQ6h0a7_DlbB5cr63roaLtqusjpegjMjXNRX-3cE3qeT5fg5mb_NXsZP80TQvGgTSo2ShZRCpkymiEnFGJO5zFTFK65oJXimBDUFYprzlPX3s9wIijNZZIqkdATudnM3ofnsdGzL2kalnRNeN10scZ5Stm3C_1NGCcozRFFP73dUhSbGoE25CbYW4bvEqNzGXB5i7u3Nfmwna10d5G-uPbjdAxGVcCYIr2w8ujzPSE7o0QkVy3XTBd8H98fCH65vj3M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1432076030</pqid></control><display><type>article</type><title>Examining Graphene Field Effect Sensors for Ferroelectric Thin Film Studies</title><source>ACS Publications</source><source>MEDLINE</source><creator>Rajapitamahuni, A ; Hoffman, J ; Ahn, C. H ; Hong, X</creator><creatorcontrib>Rajapitamahuni, A ; Hoffman, J ; Ahn, C. H ; Hong, X</creatorcontrib><description>We examine a prototype graphene field effect sensor for the study of the dielectric constant, pyroelectric coefficient, and ferroelectric polarization of 100–300 nm epitaxial (Ba,Sr)TiO3 thin films. Ferroelectric switching induces hysteresis in the resistivity and carrier density of n-layer graphene (n = 1–5) below 100 K, which competes with an antihysteresis behavior activated by the combined effects of electric field and temperature. We also discuss how the polarization asymmetry and interface charge dynamics affect the electronic properties of graphene.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl402204t</identifier><identifier>PMID: 23924380</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Crystallization ; Dielectric, piezoelectric, ferroelectric and antiferroelectric materials ; Dielectrics, piezoelectrics, and ferroelectrics and their properties ; Electric Conductivity ; Electric fields ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in multilayers, nanoscale materials and structures ; Exact sciences and technology ; Ferroelectric materials ; Ferroelectricity ; Fullerenes and related materials; diamonds, graphite ; General equipment and techniques ; Graphene ; Graphite - chemistry ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Magnetite Nanoparticles - chemistry ; Materials science ; Nanostructure ; Physics ; Polarization ; Sensors ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Specific materials ; Thin films ; Titanium - chemistry</subject><ispartof>Nano letters, 2013-09, Vol.13 (9), p.4374-4379</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-33fcb8bbab54b504bc444b7b6cd9d9c3da96ca3f804e995498447fa316b86c253</citedby><cites>FETCH-LOGICAL-a378t-33fcb8bbab54b504bc444b7b6cd9d9c3da96ca3f804e995498447fa316b86c253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl402204t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl402204t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27762723$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23924380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajapitamahuni, A</creatorcontrib><creatorcontrib>Hoffman, J</creatorcontrib><creatorcontrib>Ahn, C. H</creatorcontrib><creatorcontrib>Hong, X</creatorcontrib><title>Examining Graphene Field Effect Sensors for Ferroelectric Thin Film Studies</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We examine a prototype graphene field effect sensor for the study of the dielectric constant, pyroelectric coefficient, and ferroelectric polarization of 100–300 nm epitaxial (Ba,Sr)TiO3 thin films. Ferroelectric switching induces hysteresis in the resistivity and carrier density of n-layer graphene (n = 1–5) below 100 K, which competes with an antihysteresis behavior activated by the combined effects of electric field and temperature. We also discuss how the polarization asymmetry and interface charge dynamics affect the electronic properties of graphene.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization</subject><subject>Dielectric, piezoelectric, ferroelectric and antiferroelectric materials</subject><subject>Dielectrics, piezoelectrics, and ferroelectrics and their properties</subject><subject>Electric Conductivity</subject><subject>Electric fields</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in multilayers, nanoscale materials and structures</subject><subject>Exact sciences and technology</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>General equipment and techniques</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Magnetite Nanoparticles - chemistry</subject><subject>Materials science</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Polarization</subject><subject>Sensors</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Specific materials</subject><subject>Thin films</subject><subject>Titanium - chemistry</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0MtKAzEUBuAgiq3VhS8g2Qi6GM1tLllKaatYcNG6HpJMYlMymZrMgL69U1rbjeAqh_CdCz8A1xg9YETwo3cMEYJYewKGOKUoyTgnp4e6YANwEeMaIcRpis7BgFBOGC3QELxOvkRtvfUfcBbEZqW9hlOrXQUnxmjVwoX2sQkRmibAqQ6h0a7_DlbB5cr63roaLtqusjpegjMjXNRX-3cE3qeT5fg5mb_NXsZP80TQvGgTSo2ShZRCpkymiEnFGJO5zFTFK65oJXimBDUFYprzlPX3s9wIijNZZIqkdATudnM3ofnsdGzL2kalnRNeN10scZ5Stm3C_1NGCcozRFFP73dUhSbGoE25CbYW4bvEqNzGXB5i7u3Nfmwna10d5G-uPbjdAxGVcCYIr2w8ujzPSE7o0QkVy3XTBd8H98fCH65vj3M</recordid><startdate>20130911</startdate><enddate>20130911</enddate><creator>Rajapitamahuni, A</creator><creator>Hoffman, J</creator><creator>Ahn, C. H</creator><creator>Hong, X</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130911</creationdate><title>Examining Graphene Field Effect Sensors for Ferroelectric Thin Film Studies</title><author>Rajapitamahuni, A ; Hoffman, J ; Ahn, C. H ; Hong, X</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-33fcb8bbab54b504bc444b7b6cd9d9c3da96ca3f804e995498447fa316b86c253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization</topic><topic>Dielectric, piezoelectric, ferroelectric and antiferroelectric materials</topic><topic>Dielectrics, piezoelectrics, and ferroelectrics and their properties</topic><topic>Electric Conductivity</topic><topic>Electric fields</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in multilayers, nanoscale materials and structures</topic><topic>Exact sciences and technology</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>General equipment and techniques</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Magnetite Nanoparticles - chemistry</topic><topic>Materials science</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Polarization</topic><topic>Sensors</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Specific materials</topic><topic>Thin films</topic><topic>Titanium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajapitamahuni, A</creatorcontrib><creatorcontrib>Hoffman, J</creatorcontrib><creatorcontrib>Ahn, C. H</creatorcontrib><creatorcontrib>Hong, X</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajapitamahuni, A</au><au>Hoffman, J</au><au>Ahn, C. H</au><au>Hong, X</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Examining Graphene Field Effect Sensors for Ferroelectric Thin Film Studies</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2013-09-11</date><risdate>2013</risdate><volume>13</volume><issue>9</issue><spage>4374</spage><epage>4379</epage><pages>4374-4379</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We examine a prototype graphene field effect sensor for the study of the dielectric constant, pyroelectric coefficient, and ferroelectric polarization of 100–300 nm epitaxial (Ba,Sr)TiO3 thin films. Ferroelectric switching induces hysteresis in the resistivity and carrier density of n-layer graphene (n = 1–5) below 100 K, which competes with an antihysteresis behavior activated by the combined effects of electric field and temperature. We also discuss how the polarization asymmetry and interface charge dynamics affect the electronic properties of graphene.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23924380</pmid><doi>10.1021/nl402204t</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2013-09, Vol.13 (9), p.4374-4379
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1753484471
source ACS Publications; MEDLINE
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Crystallization
Dielectric, piezoelectric, ferroelectric and antiferroelectric materials
Dielectrics, piezoelectrics, and ferroelectrics and their properties
Electric Conductivity
Electric fields
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport in multilayers, nanoscale materials and structures
Exact sciences and technology
Ferroelectric materials
Ferroelectricity
Fullerenes and related materials
diamonds, graphite
General equipment and techniques
Graphene
Graphite - chemistry
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Magnetite Nanoparticles - chemistry
Materials science
Nanostructure
Physics
Polarization
Sensors
Sensors (chemical, optical, electrical, movement, gas, etc.)
remote sensing
Specific materials
Thin films
Titanium - chemistry
title Examining Graphene Field Effect Sensors for Ferroelectric Thin Film Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A08%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Examining%20Graphene%20Field%20Effect%20Sensors%20for%20Ferroelectric%20Thin%20Film%20Studies&rft.jtitle=Nano%20letters&rft.au=Rajapitamahuni,%20A&rft.date=2013-09-11&rft.volume=13&rft.issue=9&rft.spage=4374&rft.epage=4379&rft.pages=4374-4379&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl402204t&rft_dat=%3Cproquest_cross%3E1432076030%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1432076030&rft_id=info:pmid/23924380&rfr_iscdi=true