Examining Graphene Field Effect Sensors for Ferroelectric Thin Film Studies
We examine a prototype graphene field effect sensor for the study of the dielectric constant, pyroelectric coefficient, and ferroelectric polarization of 100–300 nm epitaxial (Ba,Sr)TiO3 thin films. Ferroelectric switching induces hysteresis in the resistivity and carrier density of n-layer graphene...
Gespeichert in:
Veröffentlicht in: | Nano letters 2013-09, Vol.13 (9), p.4374-4379 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4379 |
---|---|
container_issue | 9 |
container_start_page | 4374 |
container_title | Nano letters |
container_volume | 13 |
creator | Rajapitamahuni, A Hoffman, J Ahn, C. H Hong, X |
description | We examine a prototype graphene field effect sensor for the study of the dielectric constant, pyroelectric coefficient, and ferroelectric polarization of 100–300 nm epitaxial (Ba,Sr)TiO3 thin films. Ferroelectric switching induces hysteresis in the resistivity and carrier density of n-layer graphene (n = 1–5) below 100 K, which competes with an antihysteresis behavior activated by the combined effects of electric field and temperature. We also discuss how the polarization asymmetry and interface charge dynamics affect the electronic properties of graphene. |
doi_str_mv | 10.1021/nl402204t |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753484471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1432076030</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-33fcb8bbab54b504bc444b7b6cd9d9c3da96ca3f804e995498447fa316b86c253</originalsourceid><addsrcrecordid>eNqF0MtKAzEUBuAgiq3VhS8g2Qi6GM1tLllKaatYcNG6HpJMYlMymZrMgL69U1rbjeAqh_CdCz8A1xg9YETwo3cMEYJYewKGOKUoyTgnp4e6YANwEeMaIcRpis7BgFBOGC3QELxOvkRtvfUfcBbEZqW9hlOrXQUnxmjVwoX2sQkRmibAqQ6h0a7_DlbB5cr63roaLtqusjpegjMjXNRX-3cE3qeT5fg5mb_NXsZP80TQvGgTSo2ShZRCpkymiEnFGJO5zFTFK65oJXimBDUFYprzlPX3s9wIijNZZIqkdATudnM3ofnsdGzL2kalnRNeN10scZ5Stm3C_1NGCcozRFFP73dUhSbGoE25CbYW4bvEqNzGXB5i7u3Nfmwna10d5G-uPbjdAxGVcCYIr2w8ujzPSE7o0QkVy3XTBd8H98fCH65vj3M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1432076030</pqid></control><display><type>article</type><title>Examining Graphene Field Effect Sensors for Ferroelectric Thin Film Studies</title><source>ACS Publications</source><source>MEDLINE</source><creator>Rajapitamahuni, A ; Hoffman, J ; Ahn, C. H ; Hong, X</creator><creatorcontrib>Rajapitamahuni, A ; Hoffman, J ; Ahn, C. H ; Hong, X</creatorcontrib><description>We examine a prototype graphene field effect sensor for the study of the dielectric constant, pyroelectric coefficient, and ferroelectric polarization of 100–300 nm epitaxial (Ba,Sr)TiO3 thin films. Ferroelectric switching induces hysteresis in the resistivity and carrier density of n-layer graphene (n = 1–5) below 100 K, which competes with an antihysteresis behavior activated by the combined effects of electric field and temperature. We also discuss how the polarization asymmetry and interface charge dynamics affect the electronic properties of graphene.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl402204t</identifier><identifier>PMID: 23924380</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Crystallization ; Dielectric, piezoelectric, ferroelectric and antiferroelectric materials ; Dielectrics, piezoelectrics, and ferroelectrics and their properties ; Electric Conductivity ; Electric fields ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in multilayers, nanoscale materials and structures ; Exact sciences and technology ; Ferroelectric materials ; Ferroelectricity ; Fullerenes and related materials; diamonds, graphite ; General equipment and techniques ; Graphene ; Graphite - chemistry ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Magnetite Nanoparticles - chemistry ; Materials science ; Nanostructure ; Physics ; Polarization ; Sensors ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Specific materials ; Thin films ; Titanium - chemistry</subject><ispartof>Nano letters, 2013-09, Vol.13 (9), p.4374-4379</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-33fcb8bbab54b504bc444b7b6cd9d9c3da96ca3f804e995498447fa316b86c253</citedby><cites>FETCH-LOGICAL-a378t-33fcb8bbab54b504bc444b7b6cd9d9c3da96ca3f804e995498447fa316b86c253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl402204t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl402204t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27762723$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23924380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajapitamahuni, A</creatorcontrib><creatorcontrib>Hoffman, J</creatorcontrib><creatorcontrib>Ahn, C. H</creatorcontrib><creatorcontrib>Hong, X</creatorcontrib><title>Examining Graphene Field Effect Sensors for Ferroelectric Thin Film Studies</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We examine a prototype graphene field effect sensor for the study of the dielectric constant, pyroelectric coefficient, and ferroelectric polarization of 100–300 nm epitaxial (Ba,Sr)TiO3 thin films. Ferroelectric switching induces hysteresis in the resistivity and carrier density of n-layer graphene (n = 1–5) below 100 K, which competes with an antihysteresis behavior activated by the combined effects of electric field and temperature. We also discuss how the polarization asymmetry and interface charge dynamics affect the electronic properties of graphene.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization</subject><subject>Dielectric, piezoelectric, ferroelectric and antiferroelectric materials</subject><subject>Dielectrics, piezoelectrics, and ferroelectrics and their properties</subject><subject>Electric Conductivity</subject><subject>Electric fields</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in multilayers, nanoscale materials and structures</subject><subject>Exact sciences and technology</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>General equipment and techniques</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Magnetite Nanoparticles - chemistry</subject><subject>Materials science</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Polarization</subject><subject>Sensors</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Specific materials</subject><subject>Thin films</subject><subject>Titanium - chemistry</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0MtKAzEUBuAgiq3VhS8g2Qi6GM1tLllKaatYcNG6HpJMYlMymZrMgL69U1rbjeAqh_CdCz8A1xg9YETwo3cMEYJYewKGOKUoyTgnp4e6YANwEeMaIcRpis7BgFBOGC3QELxOvkRtvfUfcBbEZqW9hlOrXQUnxmjVwoX2sQkRmibAqQ6h0a7_DlbB5cr63roaLtqusjpegjMjXNRX-3cE3qeT5fg5mb_NXsZP80TQvGgTSo2ShZRCpkymiEnFGJO5zFTFK65oJXimBDUFYprzlPX3s9wIijNZZIqkdATudnM3ofnsdGzL2kalnRNeN10scZ5Stm3C_1NGCcozRFFP73dUhSbGoE25CbYW4bvEqNzGXB5i7u3Nfmwna10d5G-uPbjdAxGVcCYIr2w8ujzPSE7o0QkVy3XTBd8H98fCH65vj3M</recordid><startdate>20130911</startdate><enddate>20130911</enddate><creator>Rajapitamahuni, A</creator><creator>Hoffman, J</creator><creator>Ahn, C. H</creator><creator>Hong, X</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130911</creationdate><title>Examining Graphene Field Effect Sensors for Ferroelectric Thin Film Studies</title><author>Rajapitamahuni, A ; Hoffman, J ; Ahn, C. H ; Hong, X</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-33fcb8bbab54b504bc444b7b6cd9d9c3da96ca3f804e995498447fa316b86c253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization</topic><topic>Dielectric, piezoelectric, ferroelectric and antiferroelectric materials</topic><topic>Dielectrics, piezoelectrics, and ferroelectrics and their properties</topic><topic>Electric Conductivity</topic><topic>Electric fields</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in multilayers, nanoscale materials and structures</topic><topic>Exact sciences and technology</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>General equipment and techniques</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Magnetite Nanoparticles - chemistry</topic><topic>Materials science</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Polarization</topic><topic>Sensors</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Specific materials</topic><topic>Thin films</topic><topic>Titanium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajapitamahuni, A</creatorcontrib><creatorcontrib>Hoffman, J</creatorcontrib><creatorcontrib>Ahn, C. H</creatorcontrib><creatorcontrib>Hong, X</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajapitamahuni, A</au><au>Hoffman, J</au><au>Ahn, C. H</au><au>Hong, X</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Examining Graphene Field Effect Sensors for Ferroelectric Thin Film Studies</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2013-09-11</date><risdate>2013</risdate><volume>13</volume><issue>9</issue><spage>4374</spage><epage>4379</epage><pages>4374-4379</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We examine a prototype graphene field effect sensor for the study of the dielectric constant, pyroelectric coefficient, and ferroelectric polarization of 100–300 nm epitaxial (Ba,Sr)TiO3 thin films. Ferroelectric switching induces hysteresis in the resistivity and carrier density of n-layer graphene (n = 1–5) below 100 K, which competes with an antihysteresis behavior activated by the combined effects of electric field and temperature. We also discuss how the polarization asymmetry and interface charge dynamics affect the electronic properties of graphene.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23924380</pmid><doi>10.1021/nl402204t</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2013-09, Vol.13 (9), p.4374-4379 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753484471 |
source | ACS Publications; MEDLINE |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology Crystallization Dielectric, piezoelectric, ferroelectric and antiferroelectric materials Dielectrics, piezoelectrics, and ferroelectrics and their properties Electric Conductivity Electric fields Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic transport in multilayers, nanoscale materials and structures Exact sciences and technology Ferroelectric materials Ferroelectricity Fullerenes and related materials diamonds, graphite General equipment and techniques Graphene Graphite - chemistry Instruments, apparatus, components and techniques common to several branches of physics and astronomy Magnetite Nanoparticles - chemistry Materials science Nanostructure Physics Polarization Sensors Sensors (chemical, optical, electrical, movement, gas, etc.) remote sensing Specific materials Thin films Titanium - chemistry |
title | Examining Graphene Field Effect Sensors for Ferroelectric Thin Film Studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A08%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Examining%20Graphene%20Field%20Effect%20Sensors%20for%20Ferroelectric%20Thin%20Film%20Studies&rft.jtitle=Nano%20letters&rft.au=Rajapitamahuni,%20A&rft.date=2013-09-11&rft.volume=13&rft.issue=9&rft.spage=4374&rft.epage=4379&rft.pages=4374-4379&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl402204t&rft_dat=%3Cproquest_cross%3E1432076030%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1432076030&rft_id=info:pmid/23924380&rfr_iscdi=true |