Closed-form shock solutions

It is shown here that a subset of the implicit analytical shock solutions discovered by Becker and by Johnson can be inverted, yielding several exact closed-form solutions of the one-dimensional compressible Navier–Stokes equations for an ideal gas. For a constant dynamic viscosity and thermal condu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2014-04, Vol.745, p.np-np, Article R1
1. Verfasser: Johnson, B. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page np
container_issue
container_start_page np
container_title Journal of fluid mechanics
container_volume 745
creator Johnson, B. M.
description It is shown here that a subset of the implicit analytical shock solutions discovered by Becker and by Johnson can be inverted, yielding several exact closed-form solutions of the one-dimensional compressible Navier–Stokes equations for an ideal gas. For a constant dynamic viscosity and thermal conductivity, and at particular values of the shock Mach number, the velocity can be expressed in terms of a polynomial root. For a constant kinematic viscosity, independent of Mach number, the velocity can be expressed in terms of a hyperbolic tangent function. The remaining fluid variables are related to the velocity through simple algebraic expressions. The solutions derived here make excellent verification tests for numerical algorithms, since no source terms in the evolution equations are approximated, and the closed-form expressions are straightforward to implement. The solutions are also of some academic interest as they may provide insight into the nonlinear character of the Navier–Stokes equations and may stimulate further analytical developments.
doi_str_mv 10.1017/jfm.2014.107
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753483647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2014_107</cupid><sourcerecordid>1753483647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-21fbb9bb9171b640625546fb4b10b4a67eb01b6403bebf8e18638efa857438133</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqGwsbFUYmEg5c52bGdEVfmQKrHAbMWpDSlJXOxk4N_j0g4IMSCddLq7597TvYScI8wQUN6sXTejgDxV8oBkyEWZS8GLQ5IBUJojUjgmJzGuAZBBKTNyMW99tKvc-dBN45uv36fRt-PQ-D6ekiNXtdGe7fOEvNwtnucP-fLp_nF-u8xrDmLIKTpjyhQo0YjUokXBhTPcIBheCWkNfA-YscYpi0owZV2lCsmZQsYm5Gqnuwn-Y7Rx0F0Ta9u2VW_9GDXKgnHFBJf_QClFBYqLhF7-Qtd-DH16RGOBQJVQEhN1vaPq4GMM1ulNaLoqfGoEvTVVJ1P11tRUbe_P9njVmdCsXu0P1b8WvgB_UXWJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510286871</pqid></control><display><type>article</type><title>Closed-form shock solutions</title><source>Cambridge Journals Online</source><creator>Johnson, B. M.</creator><creatorcontrib>Johnson, B. M.</creatorcontrib><description>It is shown here that a subset of the implicit analytical shock solutions discovered by Becker and by Johnson can be inverted, yielding several exact closed-form solutions of the one-dimensional compressible Navier–Stokes equations for an ideal gas. For a constant dynamic viscosity and thermal conductivity, and at particular values of the shock Mach number, the velocity can be expressed in terms of a polynomial root. For a constant kinematic viscosity, independent of Mach number, the velocity can be expressed in terms of a hyperbolic tangent function. The remaining fluid variables are related to the velocity through simple algebraic expressions. The solutions derived here make excellent verification tests for numerical algorithms, since no source terms in the evolution equations are approximated, and the closed-form expressions are straightforward to implement. The solutions are also of some academic interest as they may provide insight into the nonlinear character of the Navier–Stokes equations and may stimulate further analytical developments.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2014.107</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Constants ; Exact solutions ; Fluid mechanics ; Kinematic viscosity ; Kinematics ; Mach number ; Mathematical analysis ; Mathematical models ; Navier-Stokes equations ; Rapids ; Shock waves ; Thermal conductivity ; Velocity ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2014-04, Vol.745, p.np-np, Article R1</ispartof><rights>2014 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-21fbb9bb9171b640625546fb4b10b4a67eb01b6403bebf8e18638efa857438133</citedby><cites>FETCH-LOGICAL-c406t-21fbb9bb9171b640625546fb4b10b4a67eb01b6403bebf8e18638efa857438133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112014001074/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Johnson, B. M.</creatorcontrib><title>Closed-form shock solutions</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>It is shown here that a subset of the implicit analytical shock solutions discovered by Becker and by Johnson can be inverted, yielding several exact closed-form solutions of the one-dimensional compressible Navier–Stokes equations for an ideal gas. For a constant dynamic viscosity and thermal conductivity, and at particular values of the shock Mach number, the velocity can be expressed in terms of a polynomial root. For a constant kinematic viscosity, independent of Mach number, the velocity can be expressed in terms of a hyperbolic tangent function. The remaining fluid variables are related to the velocity through simple algebraic expressions. The solutions derived here make excellent verification tests for numerical algorithms, since no source terms in the evolution equations are approximated, and the closed-form expressions are straightforward to implement. The solutions are also of some academic interest as they may provide insight into the nonlinear character of the Navier–Stokes equations and may stimulate further analytical developments.</description><subject>Algebra</subject><subject>Constants</subject><subject>Exact solutions</subject><subject>Fluid mechanics</subject><subject>Kinematic viscosity</subject><subject>Kinematics</subject><subject>Mach number</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Rapids</subject><subject>Shock waves</subject><subject>Thermal conductivity</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkD1PwzAQhi0EEqGwsbFUYmEg5c52bGdEVfmQKrHAbMWpDSlJXOxk4N_j0g4IMSCddLq7597TvYScI8wQUN6sXTejgDxV8oBkyEWZS8GLQ5IBUJojUjgmJzGuAZBBKTNyMW99tKvc-dBN45uv36fRt-PQ-D6ekiNXtdGe7fOEvNwtnucP-fLp_nF-u8xrDmLIKTpjyhQo0YjUokXBhTPcIBheCWkNfA-YscYpi0owZV2lCsmZQsYm5Gqnuwn-Y7Rx0F0Ta9u2VW_9GDXKgnHFBJf_QClFBYqLhF7-Qtd-DH16RGOBQJVQEhN1vaPq4GMM1ulNaLoqfGoEvTVVJ1P11tRUbe_P9njVmdCsXu0P1b8WvgB_UXWJ</recordid><startdate>20140425</startdate><enddate>20140425</enddate><creator>Johnson, B. M.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20140425</creationdate><title>Closed-form shock solutions</title><author>Johnson, B. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-21fbb9bb9171b640625546fb4b10b4a67eb01b6403bebf8e18638efa857438133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Constants</topic><topic>Exact solutions</topic><topic>Fluid mechanics</topic><topic>Kinematic viscosity</topic><topic>Kinematics</topic><topic>Mach number</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Rapids</topic><topic>Shock waves</topic><topic>Thermal conductivity</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, B. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, B. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed-form shock solutions</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2014-04-25</date><risdate>2014</risdate><volume>745</volume><spage>np</spage><epage>np</epage><pages>np-np</pages><artnum>R1</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>It is shown here that a subset of the implicit analytical shock solutions discovered by Becker and by Johnson can be inverted, yielding several exact closed-form solutions of the one-dimensional compressible Navier–Stokes equations for an ideal gas. For a constant dynamic viscosity and thermal conductivity, and at particular values of the shock Mach number, the velocity can be expressed in terms of a polynomial root. For a constant kinematic viscosity, independent of Mach number, the velocity can be expressed in terms of a hyperbolic tangent function. The remaining fluid variables are related to the velocity through simple algebraic expressions. The solutions derived here make excellent verification tests for numerical algorithms, since no source terms in the evolution equations are approximated, and the closed-form expressions are straightforward to implement. The solutions are also of some academic interest as they may provide insight into the nonlinear character of the Navier–Stokes equations and may stimulate further analytical developments.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2014.107</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2014-04, Vol.745, p.np-np, Article R1
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_1753483647
source Cambridge Journals Online
subjects Algebra
Constants
Exact solutions
Fluid mechanics
Kinematic viscosity
Kinematics
Mach number
Mathematical analysis
Mathematical models
Navier-Stokes equations
Rapids
Shock waves
Thermal conductivity
Velocity
Viscosity
title Closed-form shock solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed-form%20shock%20solutions&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Johnson,%20B.%C2%A0M.&rft.date=2014-04-25&rft.volume=745&rft.spage=np&rft.epage=np&rft.pages=np-np&rft.artnum=R1&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2014.107&rft_dat=%3Cproquest_cross%3E1753483647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1510286871&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2014_107&rfr_iscdi=true