A hybrid ensemble learning approach to star–galaxy classification

There exist a variety of star–galaxy classification techniques, each with their own strengths and weaknesses. In this paper, we present a novel meta-classification framework that combines and fully exploits different techniques to produce a more robust star–galaxy classification. To demonstrate this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2015-10, Vol.453 (1), p.507-521
Hauptverfasser: Kim, Edward J., Brunner, Robert J., Carrasco Kind, Matias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 521
container_issue 1
container_start_page 507
container_title Monthly notices of the Royal Astronomical Society
container_volume 453
creator Kim, Edward J.
Brunner, Robert J.
Carrasco Kind, Matias
description There exist a variety of star–galaxy classification techniques, each with their own strengths and weaknesses. In this paper, we present a novel meta-classification framework that combines and fully exploits different techniques to produce a more robust star–galaxy classification. To demonstrate this hybrid, ensemble approach, we combine a purely morphological classifier, a supervised machine learning method based on random forest, an unsupervised machine learning method based on self-organizing maps, and a hierarchical Bayesian template-fitting method. Using data from the CFHTLenS survey (Canada–France–Hawaii Telescope Lensing Survey), we consider different scenarios: when a high-quality training set is available with spectroscopic labels from DEEP2 (Deep Extragalactic Evolutionary Probe Phase 2 ), SDSS (Sloan Digital Sky Survey), VIPERS (VIMOS Public Extragalactic Redshift Survey), and VVDS (VIMOS VLT Deep Survey), and when the demographics of sources in a low-quality training set do not match the demographics of objects in the test data set. We demonstrate that our Bayesian combination technique improves the overall performance over any individual classification method in these scenarios. Thus, strategies that combine the predictions of different classifiers may prove to be optimal in currently ongoing and forthcoming photometric surveys, such as the Dark Energy Survey and the Large Synoptic Survey Telescope.
doi_str_mv 10.1093/mnras/stv1608
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753479174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stv1608</oup_id><sourcerecordid>3811628991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-f6f2449fc9bd424d0bbd1ebbba5ea7516a370523d270282292da19198026457d3</originalsourceid><addsrcrecordid>eNqN0L1OwzAUBWALgUQpjOyRWFhCfW3Hjseq4k-qxAJzdJ04bSrnBztBdOMdeEOehEArIbHAdJdPV-ccQs6BXgHVfFY3HsMs9C8gaXpAJsBlEjMt5SGZUMqTOFUAx-QkhA2lVHAmJ2Qxj9Zb46sisk2wtXE2chZ9UzWrCLvOt5ivo76NQo_-4-19hQ5ft1HuMISqrHLsq7Y5JUclumDP9ndKnm6uHxd38fLh9n4xX8a5oLyPS1kyIXSZa1MIJgpqTAHWGIOJRZWARK5ownjBFGUpY5oVCBp0SpkUiSr4lFzu_o6xngcb-qyuQm6dw8a2Q8hAJVwoDUr8gzIGUklQI734RTft4JuxyKiAKwWp4qOKdyr3bQjellnnqxr9NgOafa2ffa-f7df_CdAO3R_0E9P6hyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1713771873</pqid></control><display><type>article</type><title>A hybrid ensemble learning approach to star–galaxy classification</title><source>Oxford Journals Open Access Collection</source><creator>Kim, Edward J. ; Brunner, Robert J. ; Carrasco Kind, Matias</creator><creatorcontrib>Kim, Edward J. ; Brunner, Robert J. ; Carrasco Kind, Matias</creatorcontrib><description>There exist a variety of star–galaxy classification techniques, each with their own strengths and weaknesses. In this paper, we present a novel meta-classification framework that combines and fully exploits different techniques to produce a more robust star–galaxy classification. To demonstrate this hybrid, ensemble approach, we combine a purely morphological classifier, a supervised machine learning method based on random forest, an unsupervised machine learning method based on self-organizing maps, and a hierarchical Bayesian template-fitting method. Using data from the CFHTLenS survey (Canada–France–Hawaii Telescope Lensing Survey), we consider different scenarios: when a high-quality training set is available with spectroscopic labels from DEEP2 (Deep Extragalactic Evolutionary Probe Phase 2 ), SDSS (Sloan Digital Sky Survey), VIPERS (VIMOS Public Extragalactic Redshift Survey), and VVDS (VIMOS VLT Deep Survey), and when the demographics of sources in a low-quality training set do not match the demographics of objects in the test data set. We demonstrate that our Bayesian combination technique improves the overall performance over any individual classification method in these scenarios. Thus, strategies that combine the predictions of different classifiers may prove to be optimal in currently ongoing and forthcoming photometric surveys, such as the Dark Energy Survey and the Large Synoptic Survey Telescope.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stv1608</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Astronomy ; Bayesian analysis ; Classification ; Classifiers ; Demographics ; Machine learning ; Morphology ; Sky surveys (astronomy) ; Space telescopes ; Stars &amp; galaxies ; Telescopes ; Training</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2015-10, Vol.453 (1), p.507-521</ispartof><rights>2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2015</rights><rights>Copyright Oxford University Press, UK Oct 11, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-f6f2449fc9bd424d0bbd1ebbba5ea7516a370523d270282292da19198026457d3</citedby><cites>FETCH-LOGICAL-c403t-f6f2449fc9bd424d0bbd1ebbba5ea7516a370523d270282292da19198026457d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1603,27922,27923</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stv1608$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Kim, Edward J.</creatorcontrib><creatorcontrib>Brunner, Robert J.</creatorcontrib><creatorcontrib>Carrasco Kind, Matias</creatorcontrib><title>A hybrid ensemble learning approach to star–galaxy classification</title><title>Monthly notices of the Royal Astronomical Society</title><description>There exist a variety of star–galaxy classification techniques, each with their own strengths and weaknesses. In this paper, we present a novel meta-classification framework that combines and fully exploits different techniques to produce a more robust star–galaxy classification. To demonstrate this hybrid, ensemble approach, we combine a purely morphological classifier, a supervised machine learning method based on random forest, an unsupervised machine learning method based on self-organizing maps, and a hierarchical Bayesian template-fitting method. Using data from the CFHTLenS survey (Canada–France–Hawaii Telescope Lensing Survey), we consider different scenarios: when a high-quality training set is available with spectroscopic labels from DEEP2 (Deep Extragalactic Evolutionary Probe Phase 2 ), SDSS (Sloan Digital Sky Survey), VIPERS (VIMOS Public Extragalactic Redshift Survey), and VVDS (VIMOS VLT Deep Survey), and when the demographics of sources in a low-quality training set do not match the demographics of objects in the test data set. We demonstrate that our Bayesian combination technique improves the overall performance over any individual classification method in these scenarios. Thus, strategies that combine the predictions of different classifiers may prove to be optimal in currently ongoing and forthcoming photometric surveys, such as the Dark Energy Survey and the Large Synoptic Survey Telescope.</description><subject>Astronomy</subject><subject>Bayesian analysis</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Demographics</subject><subject>Machine learning</subject><subject>Morphology</subject><subject>Sky surveys (astronomy)</subject><subject>Space telescopes</subject><subject>Stars &amp; galaxies</subject><subject>Telescopes</subject><subject>Training</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0L1OwzAUBWALgUQpjOyRWFhCfW3Hjseq4k-qxAJzdJ04bSrnBztBdOMdeEOehEArIbHAdJdPV-ccQs6BXgHVfFY3HsMs9C8gaXpAJsBlEjMt5SGZUMqTOFUAx-QkhA2lVHAmJ2Qxj9Zb46sisk2wtXE2chZ9UzWrCLvOt5ivo76NQo_-4-19hQ5ft1HuMISqrHLsq7Y5JUclumDP9ndKnm6uHxd38fLh9n4xX8a5oLyPS1kyIXSZa1MIJgpqTAHWGIOJRZWARK5ownjBFGUpY5oVCBp0SpkUiSr4lFzu_o6xngcb-qyuQm6dw8a2Q8hAJVwoDUr8gzIGUklQI734RTft4JuxyKiAKwWp4qOKdyr3bQjellnnqxr9NgOafa2ffa-f7df_CdAO3R_0E9P6hyU</recordid><startdate>20151011</startdate><enddate>20151011</enddate><creator>Kim, Edward J.</creator><creator>Brunner, Robert J.</creator><creator>Carrasco Kind, Matias</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20151011</creationdate><title>A hybrid ensemble learning approach to star–galaxy classification</title><author>Kim, Edward J. ; Brunner, Robert J. ; Carrasco Kind, Matias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-f6f2449fc9bd424d0bbd1ebbba5ea7516a370523d270282292da19198026457d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Astronomy</topic><topic>Bayesian analysis</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Demographics</topic><topic>Machine learning</topic><topic>Morphology</topic><topic>Sky surveys (astronomy)</topic><topic>Space telescopes</topic><topic>Stars &amp; galaxies</topic><topic>Telescopes</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Edward J.</creatorcontrib><creatorcontrib>Brunner, Robert J.</creatorcontrib><creatorcontrib>Carrasco Kind, Matias</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Edward J.</au><au>Brunner, Robert J.</au><au>Carrasco Kind, Matias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid ensemble learning approach to star–galaxy classification</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2015-10-11</date><risdate>2015</risdate><volume>453</volume><issue>1</issue><spage>507</spage><epage>521</epage><pages>507-521</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>There exist a variety of star–galaxy classification techniques, each with their own strengths and weaknesses. In this paper, we present a novel meta-classification framework that combines and fully exploits different techniques to produce a more robust star–galaxy classification. To demonstrate this hybrid, ensemble approach, we combine a purely morphological classifier, a supervised machine learning method based on random forest, an unsupervised machine learning method based on self-organizing maps, and a hierarchical Bayesian template-fitting method. Using data from the CFHTLenS survey (Canada–France–Hawaii Telescope Lensing Survey), we consider different scenarios: when a high-quality training set is available with spectroscopic labels from DEEP2 (Deep Extragalactic Evolutionary Probe Phase 2 ), SDSS (Sloan Digital Sky Survey), VIPERS (VIMOS Public Extragalactic Redshift Survey), and VVDS (VIMOS VLT Deep Survey), and when the demographics of sources in a low-quality training set do not match the demographics of objects in the test data set. We demonstrate that our Bayesian combination technique improves the overall performance over any individual classification method in these scenarios. Thus, strategies that combine the predictions of different classifiers may prove to be optimal in currently ongoing and forthcoming photometric surveys, such as the Dark Energy Survey and the Large Synoptic Survey Telescope.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stv1608</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2015-10, Vol.453 (1), p.507-521
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_1753479174
source Oxford Journals Open Access Collection
subjects Astronomy
Bayesian analysis
Classification
Classifiers
Demographics
Machine learning
Morphology
Sky surveys (astronomy)
Space telescopes
Stars & galaxies
Telescopes
Training
title A hybrid ensemble learning approach to star–galaxy classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20ensemble%20learning%20approach%20to%20star%E2%80%93galaxy%20classification&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Kim,%20Edward%20J.&rft.date=2015-10-11&rft.volume=453&rft.issue=1&rft.spage=507&rft.epage=521&rft.pages=507-521&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stv1608&rft_dat=%3Cproquest_TOX%3E3811628991%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1713771873&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stv1608&rfr_iscdi=true