A hybrid ensemble learning approach to star–galaxy classification
There exist a variety of star–galaxy classification techniques, each with their own strengths and weaknesses. In this paper, we present a novel meta-classification framework that combines and fully exploits different techniques to produce a more robust star–galaxy classification. To demonstrate this...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2015-10, Vol.453 (1), p.507-521 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 521 |
---|---|
container_issue | 1 |
container_start_page | 507 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 453 |
creator | Kim, Edward J. Brunner, Robert J. Carrasco Kind, Matias |
description | There exist a variety of star–galaxy classification techniques, each with their own strengths and weaknesses. In this paper, we present a novel meta-classification framework that combines and fully exploits different techniques to produce a more robust star–galaxy classification. To demonstrate this hybrid, ensemble approach, we combine a purely morphological classifier, a supervised machine learning method based on random forest, an unsupervised machine learning method based on self-organizing maps, and a hierarchical Bayesian template-fitting method. Using data from the CFHTLenS survey (Canada–France–Hawaii Telescope Lensing Survey), we consider different scenarios: when a high-quality training set is available with spectroscopic labels from DEEP2 (Deep Extragalactic Evolutionary Probe Phase 2 ), SDSS (Sloan Digital Sky Survey), VIPERS (VIMOS Public Extragalactic Redshift Survey), and VVDS (VIMOS VLT Deep Survey), and when the demographics of sources in a low-quality training set do not match the demographics of objects in the test data set. We demonstrate that our Bayesian combination technique improves the overall performance over any individual classification method in these scenarios. Thus, strategies that combine the predictions of different classifiers may prove to be optimal in currently ongoing and forthcoming photometric surveys, such as the Dark Energy Survey and the Large Synoptic Survey Telescope. |
doi_str_mv | 10.1093/mnras/stv1608 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753479174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stv1608</oup_id><sourcerecordid>3811628991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-f6f2449fc9bd424d0bbd1ebbba5ea7516a370523d270282292da19198026457d3</originalsourceid><addsrcrecordid>eNqN0L1OwzAUBWALgUQpjOyRWFhCfW3Hjseq4k-qxAJzdJ04bSrnBztBdOMdeEOehEArIbHAdJdPV-ccQs6BXgHVfFY3HsMs9C8gaXpAJsBlEjMt5SGZUMqTOFUAx-QkhA2lVHAmJ2Qxj9Zb46sisk2wtXE2chZ9UzWrCLvOt5ivo76NQo_-4-19hQ5ft1HuMISqrHLsq7Y5JUclumDP9ndKnm6uHxd38fLh9n4xX8a5oLyPS1kyIXSZa1MIJgpqTAHWGIOJRZWARK5ownjBFGUpY5oVCBp0SpkUiSr4lFzu_o6xngcb-qyuQm6dw8a2Q8hAJVwoDUr8gzIGUklQI734RTft4JuxyKiAKwWp4qOKdyr3bQjellnnqxr9NgOafa2ffa-f7df_CdAO3R_0E9P6hyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1713771873</pqid></control><display><type>article</type><title>A hybrid ensemble learning approach to star–galaxy classification</title><source>Oxford Journals Open Access Collection</source><creator>Kim, Edward J. ; Brunner, Robert J. ; Carrasco Kind, Matias</creator><creatorcontrib>Kim, Edward J. ; Brunner, Robert J. ; Carrasco Kind, Matias</creatorcontrib><description>There exist a variety of star–galaxy classification techniques, each with their own strengths and weaknesses. In this paper, we present a novel meta-classification framework that combines and fully exploits different techniques to produce a more robust star–galaxy classification. To demonstrate this hybrid, ensemble approach, we combine a purely morphological classifier, a supervised machine learning method based on random forest, an unsupervised machine learning method based on self-organizing maps, and a hierarchical Bayesian template-fitting method. Using data from the CFHTLenS survey (Canada–France–Hawaii Telescope Lensing Survey), we consider different scenarios: when a high-quality training set is available with spectroscopic labels from DEEP2 (Deep Extragalactic Evolutionary Probe Phase 2 ), SDSS (Sloan Digital Sky Survey), VIPERS (VIMOS Public Extragalactic Redshift Survey), and VVDS (VIMOS VLT Deep Survey), and when the demographics of sources in a low-quality training set do not match the demographics of objects in the test data set. We demonstrate that our Bayesian combination technique improves the overall performance over any individual classification method in these scenarios. Thus, strategies that combine the predictions of different classifiers may prove to be optimal in currently ongoing and forthcoming photometric surveys, such as the Dark Energy Survey and the Large Synoptic Survey Telescope.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stv1608</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Astronomy ; Bayesian analysis ; Classification ; Classifiers ; Demographics ; Machine learning ; Morphology ; Sky surveys (astronomy) ; Space telescopes ; Stars & galaxies ; Telescopes ; Training</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2015-10, Vol.453 (1), p.507-521</ispartof><rights>2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2015</rights><rights>Copyright Oxford University Press, UK Oct 11, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-f6f2449fc9bd424d0bbd1ebbba5ea7516a370523d270282292da19198026457d3</citedby><cites>FETCH-LOGICAL-c403t-f6f2449fc9bd424d0bbd1ebbba5ea7516a370523d270282292da19198026457d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1603,27922,27923</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stv1608$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Kim, Edward J.</creatorcontrib><creatorcontrib>Brunner, Robert J.</creatorcontrib><creatorcontrib>Carrasco Kind, Matias</creatorcontrib><title>A hybrid ensemble learning approach to star–galaxy classification</title><title>Monthly notices of the Royal Astronomical Society</title><description>There exist a variety of star–galaxy classification techniques, each with their own strengths and weaknesses. In this paper, we present a novel meta-classification framework that combines and fully exploits different techniques to produce a more robust star–galaxy classification. To demonstrate this hybrid, ensemble approach, we combine a purely morphological classifier, a supervised machine learning method based on random forest, an unsupervised machine learning method based on self-organizing maps, and a hierarchical Bayesian template-fitting method. Using data from the CFHTLenS survey (Canada–France–Hawaii Telescope Lensing Survey), we consider different scenarios: when a high-quality training set is available with spectroscopic labels from DEEP2 (Deep Extragalactic Evolutionary Probe Phase 2 ), SDSS (Sloan Digital Sky Survey), VIPERS (VIMOS Public Extragalactic Redshift Survey), and VVDS (VIMOS VLT Deep Survey), and when the demographics of sources in a low-quality training set do not match the demographics of objects in the test data set. We demonstrate that our Bayesian combination technique improves the overall performance over any individual classification method in these scenarios. Thus, strategies that combine the predictions of different classifiers may prove to be optimal in currently ongoing and forthcoming photometric surveys, such as the Dark Energy Survey and the Large Synoptic Survey Telescope.</description><subject>Astronomy</subject><subject>Bayesian analysis</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Demographics</subject><subject>Machine learning</subject><subject>Morphology</subject><subject>Sky surveys (astronomy)</subject><subject>Space telescopes</subject><subject>Stars & galaxies</subject><subject>Telescopes</subject><subject>Training</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0L1OwzAUBWALgUQpjOyRWFhCfW3Hjseq4k-qxAJzdJ04bSrnBztBdOMdeEOehEArIbHAdJdPV-ccQs6BXgHVfFY3HsMs9C8gaXpAJsBlEjMt5SGZUMqTOFUAx-QkhA2lVHAmJ2Qxj9Zb46sisk2wtXE2chZ9UzWrCLvOt5ivo76NQo_-4-19hQ5ft1HuMISqrHLsq7Y5JUclumDP9ndKnm6uHxd38fLh9n4xX8a5oLyPS1kyIXSZa1MIJgpqTAHWGIOJRZWARK5ownjBFGUpY5oVCBp0SpkUiSr4lFzu_o6xngcb-qyuQm6dw8a2Q8hAJVwoDUr8gzIGUklQI734RTft4JuxyKiAKwWp4qOKdyr3bQjellnnqxr9NgOafa2ffa-f7df_CdAO3R_0E9P6hyU</recordid><startdate>20151011</startdate><enddate>20151011</enddate><creator>Kim, Edward J.</creator><creator>Brunner, Robert J.</creator><creator>Carrasco Kind, Matias</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20151011</creationdate><title>A hybrid ensemble learning approach to star–galaxy classification</title><author>Kim, Edward J. ; Brunner, Robert J. ; Carrasco Kind, Matias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-f6f2449fc9bd424d0bbd1ebbba5ea7516a370523d270282292da19198026457d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Astronomy</topic><topic>Bayesian analysis</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Demographics</topic><topic>Machine learning</topic><topic>Morphology</topic><topic>Sky surveys (astronomy)</topic><topic>Space telescopes</topic><topic>Stars & galaxies</topic><topic>Telescopes</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Edward J.</creatorcontrib><creatorcontrib>Brunner, Robert J.</creatorcontrib><creatorcontrib>Carrasco Kind, Matias</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Edward J.</au><au>Brunner, Robert J.</au><au>Carrasco Kind, Matias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid ensemble learning approach to star–galaxy classification</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2015-10-11</date><risdate>2015</risdate><volume>453</volume><issue>1</issue><spage>507</spage><epage>521</epage><pages>507-521</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>There exist a variety of star–galaxy classification techniques, each with their own strengths and weaknesses. In this paper, we present a novel meta-classification framework that combines and fully exploits different techniques to produce a more robust star–galaxy classification. To demonstrate this hybrid, ensemble approach, we combine a purely morphological classifier, a supervised machine learning method based on random forest, an unsupervised machine learning method based on self-organizing maps, and a hierarchical Bayesian template-fitting method. Using data from the CFHTLenS survey (Canada–France–Hawaii Telescope Lensing Survey), we consider different scenarios: when a high-quality training set is available with spectroscopic labels from DEEP2 (Deep Extragalactic Evolutionary Probe Phase 2 ), SDSS (Sloan Digital Sky Survey), VIPERS (VIMOS Public Extragalactic Redshift Survey), and VVDS (VIMOS VLT Deep Survey), and when the demographics of sources in a low-quality training set do not match the demographics of objects in the test data set. We demonstrate that our Bayesian combination technique improves the overall performance over any individual classification method in these scenarios. Thus, strategies that combine the predictions of different classifiers may prove to be optimal in currently ongoing and forthcoming photometric surveys, such as the Dark Energy Survey and the Large Synoptic Survey Telescope.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stv1608</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2015-10, Vol.453 (1), p.507-521 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753479174 |
source | Oxford Journals Open Access Collection |
subjects | Astronomy Bayesian analysis Classification Classifiers Demographics Machine learning Morphology Sky surveys (astronomy) Space telescopes Stars & galaxies Telescopes Training |
title | A hybrid ensemble learning approach to star–galaxy classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20ensemble%20learning%20approach%20to%20star%E2%80%93galaxy%20classification&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Kim,%20Edward%20J.&rft.date=2015-10-11&rft.volume=453&rft.issue=1&rft.spage=507&rft.epage=521&rft.pages=507-521&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stv1608&rft_dat=%3Cproquest_TOX%3E3811628991%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1713771873&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stv1608&rfr_iscdi=true |