Lin28 and let-7: ancient milestones on the road from pluripotency to neurogenesis

Beginning with their discovery in the context of stem cell fate choice in Caenorhabditis elegans, the microRNA (miRNA) let-7 and the RNA-binding protein Lin28 have been recognized as a regulatory pair with far-reaching impact on stem cell behavior in a wide range of organisms and tissues, including...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell and tissue research 2015-01, Vol.359 (1), p.145-160
Hauptverfasser: Rehfeld, Frederick, Rohde, Anna Maria, Nguyen, Duong Thi Thuy, Wulczyn, F. Gregory
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160
container_issue 1
container_start_page 145
container_title Cell and tissue research
container_volume 359
creator Rehfeld, Frederick
Rohde, Anna Maria
Nguyen, Duong Thi Thuy
Wulczyn, F. Gregory
description Beginning with their discovery in the context of stem cell fate choice in Caenorhabditis elegans, the microRNA (miRNA) let-7 and the RNA-binding protein Lin28 have been recognized as a regulatory pair with far-reaching impact on stem cell behavior in a wide range of organisms and tissues, including the mammalian brain. In this review, we describe molecular interactions between Lin28 and let-7 and the biological role that each plays in implementing stem cell programs that either maintain stem cell self-renewal and plasticity or drive lineage commitment and differentiation. For Lin28, considerable progress has been made in defining let-7-dependent and let-7-independent functions in the maintenance of pluripotency, somatic cell reprogramming, tissue regeneration, and neural stem cell plasticity. For the pro-differentiation activity of let-7, we focus on emerging roles in mammalian neurogenesis and neuronal function. Specific targets and pathways for let-7 have been identified in embryonic and adult neurogenesis, including corticogenesis, retinal specification, and adult neurogenic niches. Special emphasis is given to examples of feedback and feedforward regulation, in particular within the miRNA biogenesis pathway.
doi_str_mv 10.1007/s00441-014-1872-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753469414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A409238233</galeid><sourcerecordid>A409238233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-bc683ef3a580715e076c604300404a4bdcca41b4d412ccfe21e1726eb280c7a03</originalsourceid><addsrcrecordid>eNqFkkuLFDEUhYMoTjv6A9xoQBA3Nd48KpV2Nwy-oEFEB9yFdOpWd4aqpE1Si_n3pqlRZ0SULBLIdy45J4eQpwzOGED3OgNIyRpgsmG64w2_R1ZMCt6A7vR9sgIBvOmU-nZCHuV8BRVUav2QnHCpeSuZWJHPGx-4pjb0dMTSdG_q0XkMhU5-xFxiwExjoGWPNEXb0yHFiR7GOflDLBjcNS2RBpxT3GFlfX5MHgx2zPjkZj8ll-_efr340Gw-vf94cb5pXLsWpdk6pQUOwrYaOtYidMopkKJaAmnltnfOSraVvWTcuQE5Q9ZxhVuuwXUWxCl5tcw9pPh9rk81k88Ox9EGjHM2rGuFVGtZA_kvqqRgUrZMV_TFH-hVnFOoRo4UZ1wLAb-pnR3R-DDEkqw7DjXnEtZcaC5Epc7-QtXV4-RdTXaoEd8VvLwl2KMdyz7HcS4-hnwXZAvoUsw54WAOyU82XRsG5lgNs1TD1B83x2oYXjXPbpzN2wn7X4qfXagAX4Bcr8IO0y3r_5j6fBENNhq7Sz6byy8cWAsAmvEa7A-4ZMfk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642128330</pqid></control><display><type>article</type><title>Lin28 and let-7: ancient milestones on the road from pluripotency to neurogenesis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Rehfeld, Frederick ; Rohde, Anna Maria ; Nguyen, Duong Thi Thuy ; Wulczyn, F. Gregory</creator><creatorcontrib>Rehfeld, Frederick ; Rohde, Anna Maria ; Nguyen, Duong Thi Thuy ; Wulczyn, F. Gregory</creatorcontrib><description>Beginning with their discovery in the context of stem cell fate choice in Caenorhabditis elegans, the microRNA (miRNA) let-7 and the RNA-binding protein Lin28 have been recognized as a regulatory pair with far-reaching impact on stem cell behavior in a wide range of organisms and tissues, including the mammalian brain. In this review, we describe molecular interactions between Lin28 and let-7 and the biological role that each plays in implementing stem cell programs that either maintain stem cell self-renewal and plasticity or drive lineage commitment and differentiation. For Lin28, considerable progress has been made in defining let-7-dependent and let-7-independent functions in the maintenance of pluripotency, somatic cell reprogramming, tissue regeneration, and neural stem cell plasticity. For the pro-differentiation activity of let-7, we focus on emerging roles in mammalian neurogenesis and neuronal function. Specific targets and pathways for let-7 have been identified in embryonic and adult neurogenesis, including corticogenesis, retinal specification, and adult neurogenic niches. Special emphasis is given to examples of feedback and feedforward regulation, in particular within the miRNA biogenesis pathway.</description><identifier>ISSN: 0302-766X</identifier><identifier>EISSN: 1432-0878</identifier><identifier>DOI: 10.1007/s00441-014-1872-2</identifier><identifier>PMID: 24825413</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>adults ; Animals ; Binding sites ; biogenesis ; Biomedical and Life Sciences ; Biomedicine ; Biosynthesis ; brain ; Caenorhabditis elegans ; Gene Regulatory Networks ; Human Genetics ; Humans ; mammals ; MicroRNA ; MicroRNAs - metabolism ; Molecular biology ; Molecular Medicine ; Neurogenesis ; Neurophysiology ; niches ; Pluripotent Stem Cells - metabolism ; Protein binding ; Proteins ; Proteomics ; Regeneration ; Review ; Ribonucleic acid ; RNA ; RNA-binding proteins ; somatic cells ; Stem cells ; tissue repair ; Wound Healing</subject><ispartof>Cell and tissue research, 2015-01, Vol.359 (1), p.145-160</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-bc683ef3a580715e076c604300404a4bdcca41b4d412ccfe21e1726eb280c7a03</citedby><cites>FETCH-LOGICAL-c593t-bc683ef3a580715e076c604300404a4bdcca41b4d412ccfe21e1726eb280c7a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00441-014-1872-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00441-014-1872-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24825413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rehfeld, Frederick</creatorcontrib><creatorcontrib>Rohde, Anna Maria</creatorcontrib><creatorcontrib>Nguyen, Duong Thi Thuy</creatorcontrib><creatorcontrib>Wulczyn, F. Gregory</creatorcontrib><title>Lin28 and let-7: ancient milestones on the road from pluripotency to neurogenesis</title><title>Cell and tissue research</title><addtitle>Cell Tissue Res</addtitle><addtitle>Cell Tissue Res</addtitle><description>Beginning with their discovery in the context of stem cell fate choice in Caenorhabditis elegans, the microRNA (miRNA) let-7 and the RNA-binding protein Lin28 have been recognized as a regulatory pair with far-reaching impact on stem cell behavior in a wide range of organisms and tissues, including the mammalian brain. In this review, we describe molecular interactions between Lin28 and let-7 and the biological role that each plays in implementing stem cell programs that either maintain stem cell self-renewal and plasticity or drive lineage commitment and differentiation. For Lin28, considerable progress has been made in defining let-7-dependent and let-7-independent functions in the maintenance of pluripotency, somatic cell reprogramming, tissue regeneration, and neural stem cell plasticity. For the pro-differentiation activity of let-7, we focus on emerging roles in mammalian neurogenesis and neuronal function. Specific targets and pathways for let-7 have been identified in embryonic and adult neurogenesis, including corticogenesis, retinal specification, and adult neurogenic niches. Special emphasis is given to examples of feedback and feedforward regulation, in particular within the miRNA biogenesis pathway.</description><subject>adults</subject><subject>Animals</subject><subject>Binding sites</subject><subject>biogenesis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biosynthesis</subject><subject>brain</subject><subject>Caenorhabditis elegans</subject><subject>Gene Regulatory Networks</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>mammals</subject><subject>MicroRNA</subject><subject>MicroRNAs - metabolism</subject><subject>Molecular biology</subject><subject>Molecular Medicine</subject><subject>Neurogenesis</subject><subject>Neurophysiology</subject><subject>niches</subject><subject>Pluripotent Stem Cells - metabolism</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Regeneration</subject><subject>Review</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA-binding proteins</subject><subject>somatic cells</subject><subject>Stem cells</subject><subject>tissue repair</subject><subject>Wound Healing</subject><issn>0302-766X</issn><issn>1432-0878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkkuLFDEUhYMoTjv6A9xoQBA3Nd48KpV2Nwy-oEFEB9yFdOpWd4aqpE1Si_n3pqlRZ0SULBLIdy45J4eQpwzOGED3OgNIyRpgsmG64w2_R1ZMCt6A7vR9sgIBvOmU-nZCHuV8BRVUav2QnHCpeSuZWJHPGx-4pjb0dMTSdG_q0XkMhU5-xFxiwExjoGWPNEXb0yHFiR7GOflDLBjcNS2RBpxT3GFlfX5MHgx2zPjkZj8ll-_efr340Gw-vf94cb5pXLsWpdk6pQUOwrYaOtYidMopkKJaAmnltnfOSraVvWTcuQE5Q9ZxhVuuwXUWxCl5tcw9pPh9rk81k88Ox9EGjHM2rGuFVGtZA_kvqqRgUrZMV_TFH-hVnFOoRo4UZ1wLAb-pnR3R-DDEkqw7DjXnEtZcaC5Epc7-QtXV4-RdTXaoEd8VvLwl2KMdyz7HcS4-hnwXZAvoUsw54WAOyU82XRsG5lgNs1TD1B83x2oYXjXPbpzN2wn7X4qfXagAX4Bcr8IO0y3r_5j6fBENNhq7Sz6byy8cWAsAmvEa7A-4ZMfk</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Rehfeld, Frederick</creator><creator>Rohde, Anna Maria</creator><creator>Nguyen, Duong Thi Thuy</creator><creator>Wulczyn, F. Gregory</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20150101</creationdate><title>Lin28 and let-7: ancient milestones on the road from pluripotency to neurogenesis</title><author>Rehfeld, Frederick ; Rohde, Anna Maria ; Nguyen, Duong Thi Thuy ; Wulczyn, F. Gregory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-bc683ef3a580715e076c604300404a4bdcca41b4d412ccfe21e1726eb280c7a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>adults</topic><topic>Animals</topic><topic>Binding sites</topic><topic>biogenesis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biosynthesis</topic><topic>brain</topic><topic>Caenorhabditis elegans</topic><topic>Gene Regulatory Networks</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>mammals</topic><topic>MicroRNA</topic><topic>MicroRNAs - metabolism</topic><topic>Molecular biology</topic><topic>Molecular Medicine</topic><topic>Neurogenesis</topic><topic>Neurophysiology</topic><topic>niches</topic><topic>Pluripotent Stem Cells - metabolism</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Regeneration</topic><topic>Review</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA-binding proteins</topic><topic>somatic cells</topic><topic>Stem cells</topic><topic>tissue repair</topic><topic>Wound Healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rehfeld, Frederick</creatorcontrib><creatorcontrib>Rohde, Anna Maria</creatorcontrib><creatorcontrib>Nguyen, Duong Thi Thuy</creatorcontrib><creatorcontrib>Wulczyn, F. Gregory</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cell and tissue research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rehfeld, Frederick</au><au>Rohde, Anna Maria</au><au>Nguyen, Duong Thi Thuy</au><au>Wulczyn, F. Gregory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lin28 and let-7: ancient milestones on the road from pluripotency to neurogenesis</atitle><jtitle>Cell and tissue research</jtitle><stitle>Cell Tissue Res</stitle><addtitle>Cell Tissue Res</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>359</volume><issue>1</issue><spage>145</spage><epage>160</epage><pages>145-160</pages><issn>0302-766X</issn><eissn>1432-0878</eissn><abstract>Beginning with their discovery in the context of stem cell fate choice in Caenorhabditis elegans, the microRNA (miRNA) let-7 and the RNA-binding protein Lin28 have been recognized as a regulatory pair with far-reaching impact on stem cell behavior in a wide range of organisms and tissues, including the mammalian brain. In this review, we describe molecular interactions between Lin28 and let-7 and the biological role that each plays in implementing stem cell programs that either maintain stem cell self-renewal and plasticity or drive lineage commitment and differentiation. For Lin28, considerable progress has been made in defining let-7-dependent and let-7-independent functions in the maintenance of pluripotency, somatic cell reprogramming, tissue regeneration, and neural stem cell plasticity. For the pro-differentiation activity of let-7, we focus on emerging roles in mammalian neurogenesis and neuronal function. Specific targets and pathways for let-7 have been identified in embryonic and adult neurogenesis, including corticogenesis, retinal specification, and adult neurogenic niches. Special emphasis is given to examples of feedback and feedforward regulation, in particular within the miRNA biogenesis pathway.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>24825413</pmid><doi>10.1007/s00441-014-1872-2</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-766X
ispartof Cell and tissue research, 2015-01, Vol.359 (1), p.145-160
issn 0302-766X
1432-0878
language eng
recordid cdi_proquest_miscellaneous_1753469414
source MEDLINE; Springer Nature - Complete Springer Journals
subjects adults
Animals
Binding sites
biogenesis
Biomedical and Life Sciences
Biomedicine
Biosynthesis
brain
Caenorhabditis elegans
Gene Regulatory Networks
Human Genetics
Humans
mammals
MicroRNA
MicroRNAs - metabolism
Molecular biology
Molecular Medicine
Neurogenesis
Neurophysiology
niches
Pluripotent Stem Cells - metabolism
Protein binding
Proteins
Proteomics
Regeneration
Review
Ribonucleic acid
RNA
RNA-binding proteins
somatic cells
Stem cells
tissue repair
Wound Healing
title Lin28 and let-7: ancient milestones on the road from pluripotency to neurogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A12%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lin28%20and%20let-7:%20ancient%20milestones%20on%20the%20road%20from%20pluripotency%20to%20neurogenesis&rft.jtitle=Cell%20and%20tissue%20research&rft.au=Rehfeld,%20Frederick&rft.date=2015-01-01&rft.volume=359&rft.issue=1&rft.spage=145&rft.epage=160&rft.pages=145-160&rft.issn=0302-766X&rft.eissn=1432-0878&rft_id=info:doi/10.1007/s00441-014-1872-2&rft_dat=%3Cgale_proqu%3EA409238233%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642128330&rft_id=info:pmid/24825413&rft_galeid=A409238233&rfr_iscdi=true