Lin28 and let-7: ancient milestones on the road from pluripotency to neurogenesis
Beginning with their discovery in the context of stem cell fate choice in Caenorhabditis elegans, the microRNA (miRNA) let-7 and the RNA-binding protein Lin28 have been recognized as a regulatory pair with far-reaching impact on stem cell behavior in a wide range of organisms and tissues, including...
Gespeichert in:
Veröffentlicht in: | Cell and tissue research 2015-01, Vol.359 (1), p.145-160 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 160 |
---|---|
container_issue | 1 |
container_start_page | 145 |
container_title | Cell and tissue research |
container_volume | 359 |
creator | Rehfeld, Frederick Rohde, Anna Maria Nguyen, Duong Thi Thuy Wulczyn, F. Gregory |
description | Beginning with their discovery in the context of stem cell fate choice in Caenorhabditis elegans, the microRNA (miRNA) let-7 and the RNA-binding protein Lin28 have been recognized as a regulatory pair with far-reaching impact on stem cell behavior in a wide range of organisms and tissues, including the mammalian brain. In this review, we describe molecular interactions between Lin28 and let-7 and the biological role that each plays in implementing stem cell programs that either maintain stem cell self-renewal and plasticity or drive lineage commitment and differentiation. For Lin28, considerable progress has been made in defining let-7-dependent and let-7-independent functions in the maintenance of pluripotency, somatic cell reprogramming, tissue regeneration, and neural stem cell plasticity. For the pro-differentiation activity of let-7, we focus on emerging roles in mammalian neurogenesis and neuronal function. Specific targets and pathways for let-7 have been identified in embryonic and adult neurogenesis, including corticogenesis, retinal specification, and adult neurogenic niches. Special emphasis is given to examples of feedback and feedforward regulation, in particular within the miRNA biogenesis pathway. |
doi_str_mv | 10.1007/s00441-014-1872-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753469414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A409238233</galeid><sourcerecordid>A409238233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-bc683ef3a580715e076c604300404a4bdcca41b4d412ccfe21e1726eb280c7a03</originalsourceid><addsrcrecordid>eNqFkkuLFDEUhYMoTjv6A9xoQBA3Nd48KpV2Nwy-oEFEB9yFdOpWd4aqpE1Si_n3pqlRZ0SULBLIdy45J4eQpwzOGED3OgNIyRpgsmG64w2_R1ZMCt6A7vR9sgIBvOmU-nZCHuV8BRVUav2QnHCpeSuZWJHPGx-4pjb0dMTSdG_q0XkMhU5-xFxiwExjoGWPNEXb0yHFiR7GOflDLBjcNS2RBpxT3GFlfX5MHgx2zPjkZj8ll-_efr340Gw-vf94cb5pXLsWpdk6pQUOwrYaOtYidMopkKJaAmnltnfOSraVvWTcuQE5Q9ZxhVuuwXUWxCl5tcw9pPh9rk81k88Ox9EGjHM2rGuFVGtZA_kvqqRgUrZMV_TFH-hVnFOoRo4UZ1wLAb-pnR3R-DDEkqw7DjXnEtZcaC5Epc7-QtXV4-RdTXaoEd8VvLwl2KMdyz7HcS4-hnwXZAvoUsw54WAOyU82XRsG5lgNs1TD1B83x2oYXjXPbpzN2wn7X4qfXagAX4Bcr8IO0y3r_5j6fBENNhq7Sz6byy8cWAsAmvEa7A-4ZMfk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642128330</pqid></control><display><type>article</type><title>Lin28 and let-7: ancient milestones on the road from pluripotency to neurogenesis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Rehfeld, Frederick ; Rohde, Anna Maria ; Nguyen, Duong Thi Thuy ; Wulczyn, F. Gregory</creator><creatorcontrib>Rehfeld, Frederick ; Rohde, Anna Maria ; Nguyen, Duong Thi Thuy ; Wulczyn, F. Gregory</creatorcontrib><description>Beginning with their discovery in the context of stem cell fate choice in Caenorhabditis elegans, the microRNA (miRNA) let-7 and the RNA-binding protein Lin28 have been recognized as a regulatory pair with far-reaching impact on stem cell behavior in a wide range of organisms and tissues, including the mammalian brain. In this review, we describe molecular interactions between Lin28 and let-7 and the biological role that each plays in implementing stem cell programs that either maintain stem cell self-renewal and plasticity or drive lineage commitment and differentiation. For Lin28, considerable progress has been made in defining let-7-dependent and let-7-independent functions in the maintenance of pluripotency, somatic cell reprogramming, tissue regeneration, and neural stem cell plasticity. For the pro-differentiation activity of let-7, we focus on emerging roles in mammalian neurogenesis and neuronal function. Specific targets and pathways for let-7 have been identified in embryonic and adult neurogenesis, including corticogenesis, retinal specification, and adult neurogenic niches. Special emphasis is given to examples of feedback and feedforward regulation, in particular within the miRNA biogenesis pathway.</description><identifier>ISSN: 0302-766X</identifier><identifier>EISSN: 1432-0878</identifier><identifier>DOI: 10.1007/s00441-014-1872-2</identifier><identifier>PMID: 24825413</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>adults ; Animals ; Binding sites ; biogenesis ; Biomedical and Life Sciences ; Biomedicine ; Biosynthesis ; brain ; Caenorhabditis elegans ; Gene Regulatory Networks ; Human Genetics ; Humans ; mammals ; MicroRNA ; MicroRNAs - metabolism ; Molecular biology ; Molecular Medicine ; Neurogenesis ; Neurophysiology ; niches ; Pluripotent Stem Cells - metabolism ; Protein binding ; Proteins ; Proteomics ; Regeneration ; Review ; Ribonucleic acid ; RNA ; RNA-binding proteins ; somatic cells ; Stem cells ; tissue repair ; Wound Healing</subject><ispartof>Cell and tissue research, 2015-01, Vol.359 (1), p.145-160</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-bc683ef3a580715e076c604300404a4bdcca41b4d412ccfe21e1726eb280c7a03</citedby><cites>FETCH-LOGICAL-c593t-bc683ef3a580715e076c604300404a4bdcca41b4d412ccfe21e1726eb280c7a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00441-014-1872-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00441-014-1872-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24825413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rehfeld, Frederick</creatorcontrib><creatorcontrib>Rohde, Anna Maria</creatorcontrib><creatorcontrib>Nguyen, Duong Thi Thuy</creatorcontrib><creatorcontrib>Wulczyn, F. Gregory</creatorcontrib><title>Lin28 and let-7: ancient milestones on the road from pluripotency to neurogenesis</title><title>Cell and tissue research</title><addtitle>Cell Tissue Res</addtitle><addtitle>Cell Tissue Res</addtitle><description>Beginning with their discovery in the context of stem cell fate choice in Caenorhabditis elegans, the microRNA (miRNA) let-7 and the RNA-binding protein Lin28 have been recognized as a regulatory pair with far-reaching impact on stem cell behavior in a wide range of organisms and tissues, including the mammalian brain. In this review, we describe molecular interactions between Lin28 and let-7 and the biological role that each plays in implementing stem cell programs that either maintain stem cell self-renewal and plasticity or drive lineage commitment and differentiation. For Lin28, considerable progress has been made in defining let-7-dependent and let-7-independent functions in the maintenance of pluripotency, somatic cell reprogramming, tissue regeneration, and neural stem cell plasticity. For the pro-differentiation activity of let-7, we focus on emerging roles in mammalian neurogenesis and neuronal function. Specific targets and pathways for let-7 have been identified in embryonic and adult neurogenesis, including corticogenesis, retinal specification, and adult neurogenic niches. Special emphasis is given to examples of feedback and feedforward regulation, in particular within the miRNA biogenesis pathway.</description><subject>adults</subject><subject>Animals</subject><subject>Binding sites</subject><subject>biogenesis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biosynthesis</subject><subject>brain</subject><subject>Caenorhabditis elegans</subject><subject>Gene Regulatory Networks</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>mammals</subject><subject>MicroRNA</subject><subject>MicroRNAs - metabolism</subject><subject>Molecular biology</subject><subject>Molecular Medicine</subject><subject>Neurogenesis</subject><subject>Neurophysiology</subject><subject>niches</subject><subject>Pluripotent Stem Cells - metabolism</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Regeneration</subject><subject>Review</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA-binding proteins</subject><subject>somatic cells</subject><subject>Stem cells</subject><subject>tissue repair</subject><subject>Wound Healing</subject><issn>0302-766X</issn><issn>1432-0878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkkuLFDEUhYMoTjv6A9xoQBA3Nd48KpV2Nwy-oEFEB9yFdOpWd4aqpE1Si_n3pqlRZ0SULBLIdy45J4eQpwzOGED3OgNIyRpgsmG64w2_R1ZMCt6A7vR9sgIBvOmU-nZCHuV8BRVUav2QnHCpeSuZWJHPGx-4pjb0dMTSdG_q0XkMhU5-xFxiwExjoGWPNEXb0yHFiR7GOflDLBjcNS2RBpxT3GFlfX5MHgx2zPjkZj8ll-_efr340Gw-vf94cb5pXLsWpdk6pQUOwrYaOtYidMopkKJaAmnltnfOSraVvWTcuQE5Q9ZxhVuuwXUWxCl5tcw9pPh9rk81k88Ox9EGjHM2rGuFVGtZA_kvqqRgUrZMV_TFH-hVnFOoRo4UZ1wLAb-pnR3R-DDEkqw7DjXnEtZcaC5Epc7-QtXV4-RdTXaoEd8VvLwl2KMdyz7HcS4-hnwXZAvoUsw54WAOyU82XRsG5lgNs1TD1B83x2oYXjXPbpzN2wn7X4qfXagAX4Bcr8IO0y3r_5j6fBENNhq7Sz6byy8cWAsAmvEa7A-4ZMfk</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Rehfeld, Frederick</creator><creator>Rohde, Anna Maria</creator><creator>Nguyen, Duong Thi Thuy</creator><creator>Wulczyn, F. Gregory</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20150101</creationdate><title>Lin28 and let-7: ancient milestones on the road from pluripotency to neurogenesis</title><author>Rehfeld, Frederick ; Rohde, Anna Maria ; Nguyen, Duong Thi Thuy ; Wulczyn, F. Gregory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-bc683ef3a580715e076c604300404a4bdcca41b4d412ccfe21e1726eb280c7a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>adults</topic><topic>Animals</topic><topic>Binding sites</topic><topic>biogenesis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biosynthesis</topic><topic>brain</topic><topic>Caenorhabditis elegans</topic><topic>Gene Regulatory Networks</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>mammals</topic><topic>MicroRNA</topic><topic>MicroRNAs - metabolism</topic><topic>Molecular biology</topic><topic>Molecular Medicine</topic><topic>Neurogenesis</topic><topic>Neurophysiology</topic><topic>niches</topic><topic>Pluripotent Stem Cells - metabolism</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Regeneration</topic><topic>Review</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA-binding proteins</topic><topic>somatic cells</topic><topic>Stem cells</topic><topic>tissue repair</topic><topic>Wound Healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rehfeld, Frederick</creatorcontrib><creatorcontrib>Rohde, Anna Maria</creatorcontrib><creatorcontrib>Nguyen, Duong Thi Thuy</creatorcontrib><creatorcontrib>Wulczyn, F. Gregory</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cell and tissue research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rehfeld, Frederick</au><au>Rohde, Anna Maria</au><au>Nguyen, Duong Thi Thuy</au><au>Wulczyn, F. Gregory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lin28 and let-7: ancient milestones on the road from pluripotency to neurogenesis</atitle><jtitle>Cell and tissue research</jtitle><stitle>Cell Tissue Res</stitle><addtitle>Cell Tissue Res</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>359</volume><issue>1</issue><spage>145</spage><epage>160</epage><pages>145-160</pages><issn>0302-766X</issn><eissn>1432-0878</eissn><abstract>Beginning with their discovery in the context of stem cell fate choice in Caenorhabditis elegans, the microRNA (miRNA) let-7 and the RNA-binding protein Lin28 have been recognized as a regulatory pair with far-reaching impact on stem cell behavior in a wide range of organisms and tissues, including the mammalian brain. In this review, we describe molecular interactions between Lin28 and let-7 and the biological role that each plays in implementing stem cell programs that either maintain stem cell self-renewal and plasticity or drive lineage commitment and differentiation. For Lin28, considerable progress has been made in defining let-7-dependent and let-7-independent functions in the maintenance of pluripotency, somatic cell reprogramming, tissue regeneration, and neural stem cell plasticity. For the pro-differentiation activity of let-7, we focus on emerging roles in mammalian neurogenesis and neuronal function. Specific targets and pathways for let-7 have been identified in embryonic and adult neurogenesis, including corticogenesis, retinal specification, and adult neurogenic niches. Special emphasis is given to examples of feedback and feedforward regulation, in particular within the miRNA biogenesis pathway.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>24825413</pmid><doi>10.1007/s00441-014-1872-2</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-766X |
ispartof | Cell and tissue research, 2015-01, Vol.359 (1), p.145-160 |
issn | 0302-766X 1432-0878 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753469414 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | adults Animals Binding sites biogenesis Biomedical and Life Sciences Biomedicine Biosynthesis brain Caenorhabditis elegans Gene Regulatory Networks Human Genetics Humans mammals MicroRNA MicroRNAs - metabolism Molecular biology Molecular Medicine Neurogenesis Neurophysiology niches Pluripotent Stem Cells - metabolism Protein binding Proteins Proteomics Regeneration Review Ribonucleic acid RNA RNA-binding proteins somatic cells Stem cells tissue repair Wound Healing |
title | Lin28 and let-7: ancient milestones on the road from pluripotency to neurogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A12%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lin28%20and%20let-7:%20ancient%20milestones%20on%20the%20road%20from%20pluripotency%20to%20neurogenesis&rft.jtitle=Cell%20and%20tissue%20research&rft.au=Rehfeld,%20Frederick&rft.date=2015-01-01&rft.volume=359&rft.issue=1&rft.spage=145&rft.epage=160&rft.pages=145-160&rft.issn=0302-766X&rft.eissn=1432-0878&rft_id=info:doi/10.1007/s00441-014-1872-2&rft_dat=%3Cgale_proqu%3EA409238233%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642128330&rft_id=info:pmid/24825413&rft_galeid=A409238233&rfr_iscdi=true |