Paeoniflorin inhibits macrophage-mediated lung cancer metastasis
Alternatively activated macrophages are more frequently involved in tumor growth, angiogenesis, and immunosuppression. A previous study showed that paeoniflorin, the major active constituent of Paeonia lactiflora Pallas, can inhibit tumor growth and lung metastases of Lewis lung tumor-bearing mice....
Gespeichert in:
Veröffentlicht in: | Chinese journal of natural medicines 2015-12, Vol.13 (12), p.925-932 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Alternatively activated macrophages are more frequently involved in tumor growth, angiogenesis, and immunosuppression. A previous study showed that paeoniflorin, the major active constituent of Paeonia lactiflora Pallas, can inhibit tumor growth and lung metastases of Lewis lung tumor-bearing mice. This study tried to investigate whether paeoniflorin inhibited lung cancer metastasis by inhibiting the alternative activation ofmacrophages (M2 macrophage). Using a viability assay, the cytotoxicity of paeoniflorin on Lewis lung cancer cells and peritoneal macrophages were investigated. In vitro scratch wound and in vivo lung metastasis experiments were used to test the ability to inhibit the migration of paeoniflorin and the function of M2 macrophages. Flow cytometry was performed to test the cell cycle of Lewis lung cancer cells, and to test the M2 macrophages in peritoneal maerophages and subcutaneous transplantable rumor. It was found that paeoniflorin showed no inhibitory effect on the growth of Lewis lung cancer ceils and peritoneal macrophages of mouse in vitro. Paeoniflorin could attenuate the migration of LLC stimulated by alternatively activated macrophages (stimulated for 24 h and 48 h, paeoniflorin 1, 3, 10, 30, 100 μmol·L^-1, P 〈 0.01 or P 〈 0.05 vs control group). Paeoniflorin could decrease the cell populations at S phases (paeoniflorin 10, 30, 100 μmol·L^-1, P 〈 0.05 vs control group) and increase the cell populations at G0-G1 phases of Lewis lung cancer cells (paeoniflorin 100 μmol·L^-1, P 〈 0.05 vs control group) and reduce the numbers of M2 macrophages in peritoneal macrophages induced by IL-4 (paeoniflorin 1, 3, 10, 30, 100 μmol·L^-1, P 〈 0.01 vs Control group). Paeoniflorin could reduce lung metastasis of Lewis lung cancer cells xenograft and decrease the numbers of M2 macrophages in subcutaneous xenograft tumour in vivo (paeoniflorin 20, 40 mg·kg^-1, P 〈 0.01 vs control group). These results suggest that paeoniflorin could reduce lung metastasis of Lewis lung cancer cells xenografl partly through inhibiting the alternative activation of macrophages. |
---|---|
ISSN: | 2095-6975 1875-5364 1875-5364 |
DOI: | 10.1016/S1875-5364(15)30098-4 |