Designing BRET-based conformational biosensors for G protein-coupled receptors

•Ligand-biased signaling will have significant impact on drug discovery programs.•Biosensor-based platforms have been developed to capture signaling signatures.•Signatures may be particular to cell types and thus not portable from cell to cell.•We capture receptor-proximal conformational profiles us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods (San Diego, Calif.) Calif.), 2016-01, Vol.92, p.11-18
Hauptverfasser: Sleno, Rory, Pétrin, Darlaine, Devost, Dominic, Goupil, Eugénie, Zhang, Alice, Hébert, Terence E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue
container_start_page 11
container_title Methods (San Diego, Calif.)
container_volume 92
creator Sleno, Rory
Pétrin, Darlaine
Devost, Dominic
Goupil, Eugénie
Zhang, Alice
Hébert, Terence E.
description •Ligand-biased signaling will have significant impact on drug discovery programs.•Biosensor-based platforms have been developed to capture signaling signatures.•Signatures may be particular to cell types and thus not portable from cell to cell.•We capture receptor-proximal conformational profiles using BRET-based sensors.•We discuss design/optimization of sensors for orthosteric and allosteric ligands. Ligand-biased signaling is starting to have significant impact on drug discovery programs in the pharmaceutical industry and has reinvigorated our understanding of pharmacological efficacy. As such, many investigators and screening campaigns are now being directed at a larger section of the signaling responses downstream of an individual G protein-coupled receptor. Many biosensor-based platforms have been developed to capture signaling signatures. Despite our growing ability to use such signaling signatures, we remain hampered by the fact that signaling signatures may be particular to an individual cell type and thus our platforms may not be portable from cell to cell, necessitating further cell-specific biosensor development. Here, we provide a complementary strategy based on capturing receptor-proximal conformational profiles using intra-molecular BRET-based sensors composed of a Renilla luciferase donor engineered into the carboxy-terminus and CCPGCC motifs which bind fluorescent hairpin arsenical dyes engineered into different positions in intracellular loop 3 of FP, the receptor for PGF2α. We discuss the design and optimization of such sensors for orthosteric and allosteric ligands.
doi_str_mv 10.1016/j.ymeth.2015.05.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1752586676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1046202315001942</els_id><sourcerecordid>1752586676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-31ae13c2ee8cdd33c61b2481fa4d10ea09304448149b7231cc2eee494c7ff31e3</originalsourceid><addsrcrecordid>eNp9kN9LwzAQgIMobk7_AkH66Evn5Ufb9cEHnXMKQ0Hmc0jT68xom5m0wv57Mzd9FA7uuHyXSz5CLimMKdD0Zj3eNth9jBnQZAwhgB-RIYU8iXPK4XhXizRmwPiAnHm_BgDKsskpGbAkT1kq-JC8PKA3q9a0q-j-bbaMC-WxjLRtK-sa1RnbqjoqjPXYeut8FNrRPNo426FpY237TR14hxo3XTg_JyeVqj1eHPKIvD_OltOnePE6f57eLWItWN7FnCqkXDPEiS5LznVKCyYmtFKipIAKcg5ChIbIi4xxqncoilzorKo4RT4i1_t7w0s-e_SdbIzXWNeqRdt7SbOEJZM0zdKA8j2qnfXeYSU3zjTKbSUFuRMp1_JHpNyJlBACeJi6OizoiwbLv5lfcwG43QMYvvll0EmvDbYaSxNsdLK05t8F34FIhaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1752586676</pqid></control><display><type>article</type><title>Designing BRET-based conformational biosensors for G protein-coupled receptors</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Sleno, Rory ; Pétrin, Darlaine ; Devost, Dominic ; Goupil, Eugénie ; Zhang, Alice ; Hébert, Terence E.</creator><creatorcontrib>Sleno, Rory ; Pétrin, Darlaine ; Devost, Dominic ; Goupil, Eugénie ; Zhang, Alice ; Hébert, Terence E.</creatorcontrib><description>•Ligand-biased signaling will have significant impact on drug discovery programs.•Biosensor-based platforms have been developed to capture signaling signatures.•Signatures may be particular to cell types and thus not portable from cell to cell.•We capture receptor-proximal conformational profiles using BRET-based sensors.•We discuss design/optimization of sensors for orthosteric and allosteric ligands. Ligand-biased signaling is starting to have significant impact on drug discovery programs in the pharmaceutical industry and has reinvigorated our understanding of pharmacological efficacy. As such, many investigators and screening campaigns are now being directed at a larger section of the signaling responses downstream of an individual G protein-coupled receptor. Many biosensor-based platforms have been developed to capture signaling signatures. Despite our growing ability to use such signaling signatures, we remain hampered by the fact that signaling signatures may be particular to an individual cell type and thus our platforms may not be portable from cell to cell, necessitating further cell-specific biosensor development. Here, we provide a complementary strategy based on capturing receptor-proximal conformational profiles using intra-molecular BRET-based sensors composed of a Renilla luciferase donor engineered into the carboxy-terminus and CCPGCC motifs which bind fluorescent hairpin arsenical dyes engineered into different positions in intracellular loop 3 of FP, the receptor for PGF2α. We discuss the design and optimization of such sensors for orthosteric and allosteric ligands.</description><identifier>ISSN: 1046-2023</identifier><identifier>EISSN: 1095-9130</identifier><identifier>DOI: 10.1016/j.ymeth.2015.05.003</identifier><identifier>PMID: 25962643</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine A2 Receptor Antagonists - chemical synthesis ; Adenosine A2 Receptor Antagonists - metabolism ; Amino Acid Sequence ; Biased signaling ; Bioluminescence Resonance Energy Transfer Techniques - methods ; Biosensing Techniques - methods ; Biosensor ; Drug Design ; Fluorescent Dyes - chemical synthesis ; Fluorescent Dyes - metabolism ; G protein-coupled receptor ; HEK293 Cells ; Humans ; Luciferases, Renilla - chemical synthesis ; Luciferases, Renilla - metabolism ; Molecular Sequence Data ; Protein Structure, Secondary ; Receptor, Adenosine A2A - analysis ; Receptor, Adenosine A2A - metabolism ; Receptors, G-Protein-Coupled - chemistry ; Receptors, G-Protein-Coupled - genetics ; Receptors, G-Protein-Coupled - metabolism ; Resonance energy transfer ; Screening</subject><ispartof>Methods (San Diego, Calif.), 2016-01, Vol.92, p.11-18</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-31ae13c2ee8cdd33c61b2481fa4d10ea09304448149b7231cc2eee494c7ff31e3</citedby><cites>FETCH-LOGICAL-c429t-31ae13c2ee8cdd33c61b2481fa4d10ea09304448149b7231cc2eee494c7ff31e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymeth.2015.05.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25962643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sleno, Rory</creatorcontrib><creatorcontrib>Pétrin, Darlaine</creatorcontrib><creatorcontrib>Devost, Dominic</creatorcontrib><creatorcontrib>Goupil, Eugénie</creatorcontrib><creatorcontrib>Zhang, Alice</creatorcontrib><creatorcontrib>Hébert, Terence E.</creatorcontrib><title>Designing BRET-based conformational biosensors for G protein-coupled receptors</title><title>Methods (San Diego, Calif.)</title><addtitle>Methods</addtitle><description>•Ligand-biased signaling will have significant impact on drug discovery programs.•Biosensor-based platforms have been developed to capture signaling signatures.•Signatures may be particular to cell types and thus not portable from cell to cell.•We capture receptor-proximal conformational profiles using BRET-based sensors.•We discuss design/optimization of sensors for orthosteric and allosteric ligands. Ligand-biased signaling is starting to have significant impact on drug discovery programs in the pharmaceutical industry and has reinvigorated our understanding of pharmacological efficacy. As such, many investigators and screening campaigns are now being directed at a larger section of the signaling responses downstream of an individual G protein-coupled receptor. Many biosensor-based platforms have been developed to capture signaling signatures. Despite our growing ability to use such signaling signatures, we remain hampered by the fact that signaling signatures may be particular to an individual cell type and thus our platforms may not be portable from cell to cell, necessitating further cell-specific biosensor development. Here, we provide a complementary strategy based on capturing receptor-proximal conformational profiles using intra-molecular BRET-based sensors composed of a Renilla luciferase donor engineered into the carboxy-terminus and CCPGCC motifs which bind fluorescent hairpin arsenical dyes engineered into different positions in intracellular loop 3 of FP, the receptor for PGF2α. We discuss the design and optimization of such sensors for orthosteric and allosteric ligands.</description><subject>Adenosine A2 Receptor Antagonists - chemical synthesis</subject><subject>Adenosine A2 Receptor Antagonists - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Biased signaling</subject><subject>Bioluminescence Resonance Energy Transfer Techniques - methods</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensor</subject><subject>Drug Design</subject><subject>Fluorescent Dyes - chemical synthesis</subject><subject>Fluorescent Dyes - metabolism</subject><subject>G protein-coupled receptor</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Luciferases, Renilla - chemical synthesis</subject><subject>Luciferases, Renilla - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Protein Structure, Secondary</subject><subject>Receptor, Adenosine A2A - analysis</subject><subject>Receptor, Adenosine A2A - metabolism</subject><subject>Receptors, G-Protein-Coupled - chemistry</subject><subject>Receptors, G-Protein-Coupled - genetics</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>Resonance energy transfer</subject><subject>Screening</subject><issn>1046-2023</issn><issn>1095-9130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kN9LwzAQgIMobk7_AkH66Evn5Ufb9cEHnXMKQ0Hmc0jT68xom5m0wv57Mzd9FA7uuHyXSz5CLimMKdD0Zj3eNth9jBnQZAwhgB-RIYU8iXPK4XhXizRmwPiAnHm_BgDKsskpGbAkT1kq-JC8PKA3q9a0q-j-bbaMC-WxjLRtK-sa1RnbqjoqjPXYeut8FNrRPNo426FpY237TR14hxo3XTg_JyeVqj1eHPKIvD_OltOnePE6f57eLWItWN7FnCqkXDPEiS5LznVKCyYmtFKipIAKcg5ChIbIi4xxqncoilzorKo4RT4i1_t7w0s-e_SdbIzXWNeqRdt7SbOEJZM0zdKA8j2qnfXeYSU3zjTKbSUFuRMp1_JHpNyJlBACeJi6OizoiwbLv5lfcwG43QMYvvll0EmvDbYaSxNsdLK05t8F34FIhaw</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Sleno, Rory</creator><creator>Pétrin, Darlaine</creator><creator>Devost, Dominic</creator><creator>Goupil, Eugénie</creator><creator>Zhang, Alice</creator><creator>Hébert, Terence E.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160101</creationdate><title>Designing BRET-based conformational biosensors for G protein-coupled receptors</title><author>Sleno, Rory ; Pétrin, Darlaine ; Devost, Dominic ; Goupil, Eugénie ; Zhang, Alice ; Hébert, Terence E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-31ae13c2ee8cdd33c61b2481fa4d10ea09304448149b7231cc2eee494c7ff31e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenosine A2 Receptor Antagonists - chemical synthesis</topic><topic>Adenosine A2 Receptor Antagonists - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Biased signaling</topic><topic>Bioluminescence Resonance Energy Transfer Techniques - methods</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensor</topic><topic>Drug Design</topic><topic>Fluorescent Dyes - chemical synthesis</topic><topic>Fluorescent Dyes - metabolism</topic><topic>G protein-coupled receptor</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Luciferases, Renilla - chemical synthesis</topic><topic>Luciferases, Renilla - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Protein Structure, Secondary</topic><topic>Receptor, Adenosine A2A - analysis</topic><topic>Receptor, Adenosine A2A - metabolism</topic><topic>Receptors, G-Protein-Coupled - chemistry</topic><topic>Receptors, G-Protein-Coupled - genetics</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>Resonance energy transfer</topic><topic>Screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sleno, Rory</creatorcontrib><creatorcontrib>Pétrin, Darlaine</creatorcontrib><creatorcontrib>Devost, Dominic</creatorcontrib><creatorcontrib>Goupil, Eugénie</creatorcontrib><creatorcontrib>Zhang, Alice</creatorcontrib><creatorcontrib>Hébert, Terence E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Methods (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sleno, Rory</au><au>Pétrin, Darlaine</au><au>Devost, Dominic</au><au>Goupil, Eugénie</au><au>Zhang, Alice</au><au>Hébert, Terence E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing BRET-based conformational biosensors for G protein-coupled receptors</atitle><jtitle>Methods (San Diego, Calif.)</jtitle><addtitle>Methods</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>92</volume><spage>11</spage><epage>18</epage><pages>11-18</pages><issn>1046-2023</issn><eissn>1095-9130</eissn><abstract>•Ligand-biased signaling will have significant impact on drug discovery programs.•Biosensor-based platforms have been developed to capture signaling signatures.•Signatures may be particular to cell types and thus not portable from cell to cell.•We capture receptor-proximal conformational profiles using BRET-based sensors.•We discuss design/optimization of sensors for orthosteric and allosteric ligands. Ligand-biased signaling is starting to have significant impact on drug discovery programs in the pharmaceutical industry and has reinvigorated our understanding of pharmacological efficacy. As such, many investigators and screening campaigns are now being directed at a larger section of the signaling responses downstream of an individual G protein-coupled receptor. Many biosensor-based platforms have been developed to capture signaling signatures. Despite our growing ability to use such signaling signatures, we remain hampered by the fact that signaling signatures may be particular to an individual cell type and thus our platforms may not be portable from cell to cell, necessitating further cell-specific biosensor development. Here, we provide a complementary strategy based on capturing receptor-proximal conformational profiles using intra-molecular BRET-based sensors composed of a Renilla luciferase donor engineered into the carboxy-terminus and CCPGCC motifs which bind fluorescent hairpin arsenical dyes engineered into different positions in intracellular loop 3 of FP, the receptor for PGF2α. We discuss the design and optimization of such sensors for orthosteric and allosteric ligands.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25962643</pmid><doi>10.1016/j.ymeth.2015.05.003</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1046-2023
ispartof Methods (San Diego, Calif.), 2016-01, Vol.92, p.11-18
issn 1046-2023
1095-9130
language eng
recordid cdi_proquest_miscellaneous_1752586676
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Adenosine A2 Receptor Antagonists - chemical synthesis
Adenosine A2 Receptor Antagonists - metabolism
Amino Acid Sequence
Biased signaling
Bioluminescence Resonance Energy Transfer Techniques - methods
Biosensing Techniques - methods
Biosensor
Drug Design
Fluorescent Dyes - chemical synthesis
Fluorescent Dyes - metabolism
G protein-coupled receptor
HEK293 Cells
Humans
Luciferases, Renilla - chemical synthesis
Luciferases, Renilla - metabolism
Molecular Sequence Data
Protein Structure, Secondary
Receptor, Adenosine A2A - analysis
Receptor, Adenosine A2A - metabolism
Receptors, G-Protein-Coupled - chemistry
Receptors, G-Protein-Coupled - genetics
Receptors, G-Protein-Coupled - metabolism
Resonance energy transfer
Screening
title Designing BRET-based conformational biosensors for G protein-coupled receptors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T11%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20BRET-based%20conformational%20biosensors%20for%20G%20protein-coupled%20receptors&rft.jtitle=Methods%20(San%20Diego,%20Calif.)&rft.au=Sleno,%20Rory&rft.date=2016-01-01&rft.volume=92&rft.spage=11&rft.epage=18&rft.pages=11-18&rft.issn=1046-2023&rft.eissn=1095-9130&rft_id=info:doi/10.1016/j.ymeth.2015.05.003&rft_dat=%3Cproquest_cross%3E1752586676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1752586676&rft_id=info:pmid/25962643&rft_els_id=S1046202315001942&rfr_iscdi=true