The solution structure of Rhodobacter sphaeroides LH1β reveals two helical domains separated by a more flexible region: structural consequences for the LH1 complex

Here, the solution structure of the Rhodobacter sphaeroides core light-harvesting complex β polypeptide solubilised in chloroform:methanol is presented. The structure, determined by homonuclear NMR spectroscopy and distance geometry, comprises two alpha helical regions (residue −34 to −15 and −11 to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2000-04, Vol.298 (1), p.83-94
Hauptverfasser: Conroy, Matthew J, Westerhuis, Willem H.J, Parkes-Loach, Pamela S, Loach, Paul A, Hunter, C.Neil, Williamson, Michael P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 94
container_issue 1
container_start_page 83
container_title Journal of molecular biology
container_volume 298
creator Conroy, Matthew J
Westerhuis, Willem H.J
Parkes-Loach, Pamela S
Loach, Paul A
Hunter, C.Neil
Williamson, Michael P
description Here, the solution structure of the Rhodobacter sphaeroides core light-harvesting complex β polypeptide solubilised in chloroform:methanol is presented. The structure, determined by homonuclear NMR spectroscopy and distance geometry, comprises two alpha helical regions (residue −34 to −15 and −11 to +6, using the numbering system in which the conserved histidine residue is numbered zero) joined by a more flexible four amino acid residue linker. The C-terminal helix forms the membrane spanning region in the intact LH1 complex, whilst the N-terminal helix must lie in the lipid head groups or in the cytoplasm, and form the basis of interaction with the α polypeptide. The structure of a mutant β polypeptide W +9F was also determined. This mutant, which is deficient in a hydrogen bond donor to the bacteriochlorophyll, showed an identical structure to the wild-type, implying that observed differences in interaction with other LH1 polypeptides must arise from cofactor binding. Using these structures we propose a modification to existing models of the intact LH1 complex by replacing the continuous helix of the β polypeptide with two helices, one of which lies at an acute angle to the membrane plane. We suggest that a key difference between LH1 and LH2 is that the β subunit is more bent in LH1. This modification puts the N terminus of LH1β close to the reaction centre H subunit, and provides a rationale for the different ring sizes of LH1 and LH2 complexes.
doi_str_mv 10.1006/jmbi.2000.3649
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17525801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283600936490</els_id><sourcerecordid>17525801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-70350f0f3b99d8e127ff9fb29378e1721d34a72aa30b607bc2070d6b4fc2cf603</originalsourceid><addsrcrecordid>eNp1kc9u1DAYxC0EEkvhytknblk-27txwq2qgFZaqVJVzpb_fGZdJXFqO6V9H56AB-GZcLQVt54sy_ObGWsI-chgywDaz3ejCVsOAFvR7vpXZMOg65uuFd1rsgHgvOGdaN-SdznfVdVe7LoN-X17RJrjsJQQJ5pLWmxZEtLo6c0xumi0LZhono8aUwwOMz1csr9_aMIH1EOm5VekRxyC1QN1cdRhyjTjrJMu6Kh5opqOsRr6AR-DGbCCP2vUl_9ZlbNxyni_4GSrvY-JllqqxtSHca7ce_LG1yz88HyekR_fvt5eXDaH6-9XF-eHxgomSyNB7MGDF6bvXYeMS-97b3gvZL1JzpzYacm1FmBakMZykOBas_OWW9-COCOfTr5zirVOLmoM2eIw6AnjkhWTe77vgFXh9iS0Keac0Ks5hVGnJ8VArWOodQy1jqHWMSrQnQCs9R8CJpVtWP_rQkJblIvhJfQfWAeU6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17525801</pqid></control><display><type>article</type><title>The solution structure of Rhodobacter sphaeroides LH1β reveals two helical domains separated by a more flexible region: structural consequences for the LH1 complex</title><source>Elsevier ScienceDirect Journals</source><creator>Conroy, Matthew J ; Westerhuis, Willem H.J ; Parkes-Loach, Pamela S ; Loach, Paul A ; Hunter, C.Neil ; Williamson, Michael P</creator><creatorcontrib>Conroy, Matthew J ; Westerhuis, Willem H.J ; Parkes-Loach, Pamela S ; Loach, Paul A ; Hunter, C.Neil ; Williamson, Michael P</creatorcontrib><description>Here, the solution structure of the Rhodobacter sphaeroides core light-harvesting complex β polypeptide solubilised in chloroform:methanol is presented. The structure, determined by homonuclear NMR spectroscopy and distance geometry, comprises two alpha helical regions (residue −34 to −15 and −11 to +6, using the numbering system in which the conserved histidine residue is numbered zero) joined by a more flexible four amino acid residue linker. The C-terminal helix forms the membrane spanning region in the intact LH1 complex, whilst the N-terminal helix must lie in the lipid head groups or in the cytoplasm, and form the basis of interaction with the α polypeptide. The structure of a mutant β polypeptide W +9F was also determined. This mutant, which is deficient in a hydrogen bond donor to the bacteriochlorophyll, showed an identical structure to the wild-type, implying that observed differences in interaction with other LH1 polypeptides must arise from cofactor binding. Using these structures we propose a modification to existing models of the intact LH1 complex by replacing the continuous helix of the β polypeptide with two helices, one of which lies at an acute angle to the membrane plane. We suggest that a key difference between LH1 and LH2 is that the β subunit is more bent in LH1. This modification puts the N terminus of LH1β close to the reaction centre H subunit, and provides a rationale for the different ring sizes of LH1 and LH2 complexes.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1006/jmbi.2000.3649</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>light-harvesting complex ; NMR ; Rhodobacter sphaeroides ; transmembrane helix</subject><ispartof>Journal of molecular biology, 2000-04, Vol.298 (1), p.83-94</ispartof><rights>2000 Academic Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-70350f0f3b99d8e127ff9fb29378e1721d34a72aa30b607bc2070d6b4fc2cf603</citedby><cites>FETCH-LOGICAL-c317t-70350f0f3b99d8e127ff9fb29378e1721d34a72aa30b607bc2070d6b4fc2cf603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022283600936490$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Conroy, Matthew J</creatorcontrib><creatorcontrib>Westerhuis, Willem H.J</creatorcontrib><creatorcontrib>Parkes-Loach, Pamela S</creatorcontrib><creatorcontrib>Loach, Paul A</creatorcontrib><creatorcontrib>Hunter, C.Neil</creatorcontrib><creatorcontrib>Williamson, Michael P</creatorcontrib><title>The solution structure of Rhodobacter sphaeroides LH1β reveals two helical domains separated by a more flexible region: structural consequences for the LH1 complex</title><title>Journal of molecular biology</title><description>Here, the solution structure of the Rhodobacter sphaeroides core light-harvesting complex β polypeptide solubilised in chloroform:methanol is presented. The structure, determined by homonuclear NMR spectroscopy and distance geometry, comprises two alpha helical regions (residue −34 to −15 and −11 to +6, using the numbering system in which the conserved histidine residue is numbered zero) joined by a more flexible four amino acid residue linker. The C-terminal helix forms the membrane spanning region in the intact LH1 complex, whilst the N-terminal helix must lie in the lipid head groups or in the cytoplasm, and form the basis of interaction with the α polypeptide. The structure of a mutant β polypeptide W +9F was also determined. This mutant, which is deficient in a hydrogen bond donor to the bacteriochlorophyll, showed an identical structure to the wild-type, implying that observed differences in interaction with other LH1 polypeptides must arise from cofactor binding. Using these structures we propose a modification to existing models of the intact LH1 complex by replacing the continuous helix of the β polypeptide with two helices, one of which lies at an acute angle to the membrane plane. We suggest that a key difference between LH1 and LH2 is that the β subunit is more bent in LH1. This modification puts the N terminus of LH1β close to the reaction centre H subunit, and provides a rationale for the different ring sizes of LH1 and LH2 complexes.</description><subject>light-harvesting complex</subject><subject>NMR</subject><subject>Rhodobacter sphaeroides</subject><subject>transmembrane helix</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1kc9u1DAYxC0EEkvhytknblk-27txwq2qgFZaqVJVzpb_fGZdJXFqO6V9H56AB-GZcLQVt54sy_ObGWsI-chgywDaz3ejCVsOAFvR7vpXZMOg65uuFd1rsgHgvOGdaN-SdznfVdVe7LoN-X17RJrjsJQQJ5pLWmxZEtLo6c0xumi0LZhono8aUwwOMz1csr9_aMIH1EOm5VekRxyC1QN1cdRhyjTjrJMu6Kh5opqOsRr6AR-DGbCCP2vUl_9ZlbNxyni_4GSrvY-JllqqxtSHca7ce_LG1yz88HyekR_fvt5eXDaH6-9XF-eHxgomSyNB7MGDF6bvXYeMS-97b3gvZL1JzpzYacm1FmBakMZykOBas_OWW9-COCOfTr5zirVOLmoM2eIw6AnjkhWTe77vgFXh9iS0Keac0Ks5hVGnJ8VArWOodQy1jqHWMSrQnQCs9R8CJpVtWP_rQkJblIvhJfQfWAeU6w</recordid><startdate>20000421</startdate><enddate>20000421</enddate><creator>Conroy, Matthew J</creator><creator>Westerhuis, Willem H.J</creator><creator>Parkes-Loach, Pamela S</creator><creator>Loach, Paul A</creator><creator>Hunter, C.Neil</creator><creator>Williamson, Michael P</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>20000421</creationdate><title>The solution structure of Rhodobacter sphaeroides LH1β reveals two helical domains separated by a more flexible region: structural consequences for the LH1 complex</title><author>Conroy, Matthew J ; Westerhuis, Willem H.J ; Parkes-Loach, Pamela S ; Loach, Paul A ; Hunter, C.Neil ; Williamson, Michael P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-70350f0f3b99d8e127ff9fb29378e1721d34a72aa30b607bc2070d6b4fc2cf603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>light-harvesting complex</topic><topic>NMR</topic><topic>Rhodobacter sphaeroides</topic><topic>transmembrane helix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conroy, Matthew J</creatorcontrib><creatorcontrib>Westerhuis, Willem H.J</creatorcontrib><creatorcontrib>Parkes-Loach, Pamela S</creatorcontrib><creatorcontrib>Loach, Paul A</creatorcontrib><creatorcontrib>Hunter, C.Neil</creatorcontrib><creatorcontrib>Williamson, Michael P</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conroy, Matthew J</au><au>Westerhuis, Willem H.J</au><au>Parkes-Loach, Pamela S</au><au>Loach, Paul A</au><au>Hunter, C.Neil</au><au>Williamson, Michael P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The solution structure of Rhodobacter sphaeroides LH1β reveals two helical domains separated by a more flexible region: structural consequences for the LH1 complex</atitle><jtitle>Journal of molecular biology</jtitle><date>2000-04-21</date><risdate>2000</risdate><volume>298</volume><issue>1</issue><spage>83</spage><epage>94</epage><pages>83-94</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Here, the solution structure of the Rhodobacter sphaeroides core light-harvesting complex β polypeptide solubilised in chloroform:methanol is presented. The structure, determined by homonuclear NMR spectroscopy and distance geometry, comprises two alpha helical regions (residue −34 to −15 and −11 to +6, using the numbering system in which the conserved histidine residue is numbered zero) joined by a more flexible four amino acid residue linker. The C-terminal helix forms the membrane spanning region in the intact LH1 complex, whilst the N-terminal helix must lie in the lipid head groups or in the cytoplasm, and form the basis of interaction with the α polypeptide. The structure of a mutant β polypeptide W +9F was also determined. This mutant, which is deficient in a hydrogen bond donor to the bacteriochlorophyll, showed an identical structure to the wild-type, implying that observed differences in interaction with other LH1 polypeptides must arise from cofactor binding. Using these structures we propose a modification to existing models of the intact LH1 complex by replacing the continuous helix of the β polypeptide with two helices, one of which lies at an acute angle to the membrane plane. We suggest that a key difference between LH1 and LH2 is that the β subunit is more bent in LH1. This modification puts the N terminus of LH1β close to the reaction centre H subunit, and provides a rationale for the different ring sizes of LH1 and LH2 complexes.</abstract><pub>Elsevier Ltd</pub><doi>10.1006/jmbi.2000.3649</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2000-04, Vol.298 (1), p.83-94
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_17525801
source Elsevier ScienceDirect Journals
subjects light-harvesting complex
NMR
Rhodobacter sphaeroides
transmembrane helix
title The solution structure of Rhodobacter sphaeroides LH1β reveals two helical domains separated by a more flexible region: structural consequences for the LH1 complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20solution%20structure%20of%20Rhodobacter%20sphaeroides%20LH1%CE%B2%20reveals%20two%20helical%20domains%20separated%20by%20a%20more%20flexible%20region:%20structural%20consequences%20for%20the%20LH1%20complex&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Conroy,%20Matthew%20J&rft.date=2000-04-21&rft.volume=298&rft.issue=1&rft.spage=83&rft.epage=94&rft.pages=83-94&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1006/jmbi.2000.3649&rft_dat=%3Cproquest_cross%3E17525801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17525801&rft_id=info:pmid/&rft_els_id=S0022283600936490&rfr_iscdi=true