Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting
Programmed −1 ribosomal frameshifting has become the subject of increasing interest over the last several years, due in part to the ubiquitous nature of this translational recoding mechanism in pathogenic animal and plant viruses. All cis-acting frameshift signals encoded in mRNAs are minimally comp...
Gespeichert in:
Veröffentlicht in: | Journal of Molecular Biology 2000-04, Vol.298 (2), p.167-185 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 185 |
---|---|
container_issue | 2 |
container_start_page | 167 |
container_title | Journal of Molecular Biology |
container_volume | 298 |
creator | Giedroc, David P Theimer, Carla A Nixon, Paul L |
description | Programmed −1 ribosomal frameshifting has become the subject of increasing interest over the last several years, due in part to the ubiquitous nature of this translational recoding mechanism in pathogenic animal and plant viruses. All
cis-acting frameshift signals encoded in mRNAs are minimally composed of two functional elements: a heptanucleotide “slippery sequence” conforming to the general form X XXY YYZ, followed by an RNA structural element, usually an H-type RNA pseudoknot, positioned an optimal number of nucleotides (5 to 9) downstream. The slippery sequence itself promotes a low level (≈1 %) of frameshifting; however, downstream pseudoknots stimulate this process significantly, in some cases up to 30 to 50 %. Although the precise molecular mechanism of stimulation of frameshifting remains poorly understood, significant advances have been made in our knowledge of the three-dimensional structures, thermodynamics of folding, and functional determinants of stimulatory RNA pseudoknots derived from the study of several well-characterized frameshift signals. These studies are summarized here and provide new insights into the structural requirements and mechanism of programmed −1 ribosomal frameshifting. |
doi_str_mv | 10.1006/jmbi.2000.3668 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17525335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283600936684</els_id><sourcerecordid>17525335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-ced744333d0f43af258c563eb5a531a6401be4a02ec7df7c205d517f5434f2ed3</originalsourceid><addsrcrecordid>eNp1kD1v2zAQhokgRe24XTsGnDJFLj8legyCNgkQtEA-ZoIijykdSXRJyoD_fSXYQ5dMdzg87wvcg9A3StaUkPr7tm_DmhFC1ryu1RlaUqI2laq5OkdLQhirmOL1Al3kvJ0oyYX6jBaUNLWQarNE7rmk0ZYxwTXOxbShC-WAzeCwHwdbQhxw9Pjp1w3eZRhdfB9iyTgM-9jtwU3LlAr92JkShjecQhtz7E2HfTI95D_Bz_cv6JM3XYavp7lCrz9_vNzeV4-_7x5ubx4rK5qmVBZcIwTn3BEvuPFMKitrDq00klNTC0JbEIYwsI3zjWVEOkkbLwUXnoHjK3R17N2l-HeEXHQfsoWuMwPEMWvaSCY5lxO4PoI2xZwTeL1LoTfpoCnRs1c9e9WzVz17nQKXp-ax7cH9hx9FToA6AjD9tw-QdLYBhumlkMAW7WL4qPsfLpqJKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17525335</pqid></control><display><type>article</type><title>Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Giedroc, David P ; Theimer, Carla A ; Nixon, Paul L</creator><creatorcontrib>Giedroc, David P ; Theimer, Carla A ; Nixon, Paul L</creatorcontrib><description>Programmed −1 ribosomal frameshifting has become the subject of increasing interest over the last several years, due in part to the ubiquitous nature of this translational recoding mechanism in pathogenic animal and plant viruses. All
cis-acting frameshift signals encoded in mRNAs are minimally composed of two functional elements: a heptanucleotide “slippery sequence” conforming to the general form X XXY YYZ, followed by an RNA structural element, usually an H-type RNA pseudoknot, positioned an optimal number of nucleotides (5 to 9) downstream. The slippery sequence itself promotes a low level (≈1 %) of frameshifting; however, downstream pseudoknots stimulate this process significantly, in some cases up to 30 to 50 %. Although the precise molecular mechanism of stimulation of frameshifting remains poorly understood, significant advances have been made in our knowledge of the three-dimensional structures, thermodynamics of folding, and functional determinants of stimulatory RNA pseudoknots derived from the study of several well-characterized frameshift signals. These studies are summarized here and provide new insights into the structural requirements and mechanism of programmed −1 ribosomal frameshifting.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1006/jmbi.2000.3668</identifier><identifier>PMID: 10764589</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Base Sequence ; Cations - metabolism ; Cations - pharmacology ; Frameshifting, Ribosomal - genetics ; Infectious bronchitis virus - genetics ; Luteovirus - genetics ; Mammary Tumor Virus, Mouse - genetics ; Models, Genetic ; Nucleic Acid Conformation - drug effects ; recoding ; Retroviruses, Simian - genetics ; ribosomal frameshifting ; RNA ; RNA pseudoknot ; RNA Stability - drug effects ; RNA structure ; RNA thermodynamics ; RNA, Messenger - chemistry ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; RNA, Viral - chemistry ; RNA, Viral - genetics ; RNA, Viral - metabolism</subject><ispartof>Journal of Molecular Biology, 2000-04, Vol.298 (2), p.167-185</ispartof><rights>2000 Academic Press</rights><rights>Copyright 2000 Academic Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-ced744333d0f43af258c563eb5a531a6401be4a02ec7df7c205d517f5434f2ed3</citedby><cites>FETCH-LOGICAL-c477t-ced744333d0f43af258c563eb5a531a6401be4a02ec7df7c205d517f5434f2ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jmbi.2000.3668$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>313,314,780,784,792,3550,27922,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10764589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giedroc, David P</creatorcontrib><creatorcontrib>Theimer, Carla A</creatorcontrib><creatorcontrib>Nixon, Paul L</creatorcontrib><title>Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting</title><title>Journal of Molecular Biology</title><addtitle>J Mol Biol</addtitle><description>Programmed −1 ribosomal frameshifting has become the subject of increasing interest over the last several years, due in part to the ubiquitous nature of this translational recoding mechanism in pathogenic animal and plant viruses. All
cis-acting frameshift signals encoded in mRNAs are minimally composed of two functional elements: a heptanucleotide “slippery sequence” conforming to the general form X XXY YYZ, followed by an RNA structural element, usually an H-type RNA pseudoknot, positioned an optimal number of nucleotides (5 to 9) downstream. The slippery sequence itself promotes a low level (≈1 %) of frameshifting; however, downstream pseudoknots stimulate this process significantly, in some cases up to 30 to 50 %. Although the precise molecular mechanism of stimulation of frameshifting remains poorly understood, significant advances have been made in our knowledge of the three-dimensional structures, thermodynamics of folding, and functional determinants of stimulatory RNA pseudoknots derived from the study of several well-characterized frameshift signals. These studies are summarized here and provide new insights into the structural requirements and mechanism of programmed −1 ribosomal frameshifting.</description><subject>Base Sequence</subject><subject>Cations - metabolism</subject><subject>Cations - pharmacology</subject><subject>Frameshifting, Ribosomal - genetics</subject><subject>Infectious bronchitis virus - genetics</subject><subject>Luteovirus - genetics</subject><subject>Mammary Tumor Virus, Mouse - genetics</subject><subject>Models, Genetic</subject><subject>Nucleic Acid Conformation - drug effects</subject><subject>recoding</subject><subject>Retroviruses, Simian - genetics</subject><subject>ribosomal frameshifting</subject><subject>RNA</subject><subject>RNA pseudoknot</subject><subject>RNA Stability - drug effects</subject><subject>RNA structure</subject><subject>RNA thermodynamics</subject><subject>RNA, Messenger - chemistry</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Viral - chemistry</subject><subject>RNA, Viral - genetics</subject><subject>RNA, Viral - metabolism</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1v2zAQhokgRe24XTsGnDJFLj8legyCNgkQtEA-ZoIijykdSXRJyoD_fSXYQ5dMdzg87wvcg9A3StaUkPr7tm_DmhFC1ryu1RlaUqI2laq5OkdLQhirmOL1Al3kvJ0oyYX6jBaUNLWQarNE7rmk0ZYxwTXOxbShC-WAzeCwHwdbQhxw9Pjp1w3eZRhdfB9iyTgM-9jtwU3LlAr92JkShjecQhtz7E2HfTI95D_Bz_cv6JM3XYavp7lCrz9_vNzeV4-_7x5ubx4rK5qmVBZcIwTn3BEvuPFMKitrDq00klNTC0JbEIYwsI3zjWVEOkkbLwUXnoHjK3R17N2l-HeEXHQfsoWuMwPEMWvaSCY5lxO4PoI2xZwTeL1LoTfpoCnRs1c9e9WzVz17nQKXp-ax7cH9hx9FToA6AjD9tw-QdLYBhumlkMAW7WL4qPsfLpqJKw</recordid><startdate>20000428</startdate><enddate>20000428</enddate><creator>Giedroc, David P</creator><creator>Theimer, Carla A</creator><creator>Nixon, Paul L</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope></search><sort><creationdate>20000428</creationdate><title>Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting</title><author>Giedroc, David P ; Theimer, Carla A ; Nixon, Paul L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-ced744333d0f43af258c563eb5a531a6401be4a02ec7df7c205d517f5434f2ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Base Sequence</topic><topic>Cations - metabolism</topic><topic>Cations - pharmacology</topic><topic>Frameshifting, Ribosomal - genetics</topic><topic>Infectious bronchitis virus - genetics</topic><topic>Luteovirus - genetics</topic><topic>Mammary Tumor Virus, Mouse - genetics</topic><topic>Models, Genetic</topic><topic>Nucleic Acid Conformation - drug effects</topic><topic>recoding</topic><topic>Retroviruses, Simian - genetics</topic><topic>ribosomal frameshifting</topic><topic>RNA</topic><topic>RNA pseudoknot</topic><topic>RNA Stability - drug effects</topic><topic>RNA structure</topic><topic>RNA thermodynamics</topic><topic>RNA, Messenger - chemistry</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Viral - chemistry</topic><topic>RNA, Viral - genetics</topic><topic>RNA, Viral - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giedroc, David P</creatorcontrib><creatorcontrib>Theimer, Carla A</creatorcontrib><creatorcontrib>Nixon, Paul L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Journal of Molecular Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giedroc, David P</au><au>Theimer, Carla A</au><au>Nixon, Paul L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting</atitle><jtitle>Journal of Molecular Biology</jtitle><addtitle>J Mol Biol</addtitle><date>2000-04-28</date><risdate>2000</risdate><volume>298</volume><issue>2</issue><spage>167</spage><epage>185</epage><pages>167-185</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Programmed −1 ribosomal frameshifting has become the subject of increasing interest over the last several years, due in part to the ubiquitous nature of this translational recoding mechanism in pathogenic animal and plant viruses. All
cis-acting frameshift signals encoded in mRNAs are minimally composed of two functional elements: a heptanucleotide “slippery sequence” conforming to the general form X XXY YYZ, followed by an RNA structural element, usually an H-type RNA pseudoknot, positioned an optimal number of nucleotides (5 to 9) downstream. The slippery sequence itself promotes a low level (≈1 %) of frameshifting; however, downstream pseudoknots stimulate this process significantly, in some cases up to 30 to 50 %. Although the precise molecular mechanism of stimulation of frameshifting remains poorly understood, significant advances have been made in our knowledge of the three-dimensional structures, thermodynamics of folding, and functional determinants of stimulatory RNA pseudoknots derived from the study of several well-characterized frameshift signals. These studies are summarized here and provide new insights into the structural requirements and mechanism of programmed −1 ribosomal frameshifting.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>10764589</pmid><doi>10.1006/jmbi.2000.3668</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of Molecular Biology, 2000-04, Vol.298 (2), p.167-185 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_proquest_miscellaneous_17525335 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Base Sequence Cations - metabolism Cations - pharmacology Frameshifting, Ribosomal - genetics Infectious bronchitis virus - genetics Luteovirus - genetics Mammary Tumor Virus, Mouse - genetics Models, Genetic Nucleic Acid Conformation - drug effects recoding Retroviruses, Simian - genetics ribosomal frameshifting RNA RNA pseudoknot RNA Stability - drug effects RNA structure RNA thermodynamics RNA, Messenger - chemistry RNA, Messenger - genetics RNA, Messenger - metabolism RNA, Viral - chemistry RNA, Viral - genetics RNA, Viral - metabolism |
title | Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A38%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure,%20stability%20and%20function%20of%20RNA%20pseudoknots%20involved%20in%20stimulating%20ribosomal%20frameshifting&rft.jtitle=Journal%20of%20Molecular%20Biology&rft.au=Giedroc,%20David%20P&rft.date=2000-04-28&rft.volume=298&rft.issue=2&rft.spage=167&rft.epage=185&rft.pages=167-185&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1006/jmbi.2000.3668&rft_dat=%3Cproquest_cross%3E17525335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17525335&rft_id=info:pmid/10764589&rft_els_id=S0022283600936684&rfr_iscdi=true |