Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting

Programmed −1 ribosomal frameshifting has become the subject of increasing interest over the last several years, due in part to the ubiquitous nature of this translational recoding mechanism in pathogenic animal and plant viruses. All cis-acting frameshift signals encoded in mRNAs are minimally comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Molecular Biology 2000-04, Vol.298 (2), p.167-185
Hauptverfasser: Giedroc, David P, Theimer, Carla A, Nixon, Paul L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185
container_issue 2
container_start_page 167
container_title Journal of Molecular Biology
container_volume 298
creator Giedroc, David P
Theimer, Carla A
Nixon, Paul L
description Programmed −1 ribosomal frameshifting has become the subject of increasing interest over the last several years, due in part to the ubiquitous nature of this translational recoding mechanism in pathogenic animal and plant viruses. All cis-acting frameshift signals encoded in mRNAs are minimally composed of two functional elements: a heptanucleotide “slippery sequence” conforming to the general form X XXY YYZ, followed by an RNA structural element, usually an H-type RNA pseudoknot, positioned an optimal number of nucleotides (5 to 9) downstream. The slippery sequence itself promotes a low level (≈1 %) of frameshifting; however, downstream pseudoknots stimulate this process significantly, in some cases up to 30 to 50 %. Although the precise molecular mechanism of stimulation of frameshifting remains poorly understood, significant advances have been made in our knowledge of the three-dimensional structures, thermodynamics of folding, and functional determinants of stimulatory RNA pseudoknots derived from the study of several well-characterized frameshift signals. These studies are summarized here and provide new insights into the structural requirements and mechanism of programmed −1 ribosomal frameshifting.
doi_str_mv 10.1006/jmbi.2000.3668
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17525335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283600936684</els_id><sourcerecordid>17525335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-ced744333d0f43af258c563eb5a531a6401be4a02ec7df7c205d517f5434f2ed3</originalsourceid><addsrcrecordid>eNp1kD1v2zAQhokgRe24XTsGnDJFLj8legyCNgkQtEA-ZoIijykdSXRJyoD_fSXYQ5dMdzg87wvcg9A3StaUkPr7tm_DmhFC1ryu1RlaUqI2laq5OkdLQhirmOL1Al3kvJ0oyYX6jBaUNLWQarNE7rmk0ZYxwTXOxbShC-WAzeCwHwdbQhxw9Pjp1w3eZRhdfB9iyTgM-9jtwU3LlAr92JkShjecQhtz7E2HfTI95D_Bz_cv6JM3XYavp7lCrz9_vNzeV4-_7x5ubx4rK5qmVBZcIwTn3BEvuPFMKitrDq00klNTC0JbEIYwsI3zjWVEOkkbLwUXnoHjK3R17N2l-HeEXHQfsoWuMwPEMWvaSCY5lxO4PoI2xZwTeL1LoTfpoCnRs1c9e9WzVz17nQKXp-ax7cH9hx9FToA6AjD9tw-QdLYBhumlkMAW7WL4qPsfLpqJKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17525335</pqid></control><display><type>article</type><title>Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Giedroc, David P ; Theimer, Carla A ; Nixon, Paul L</creator><creatorcontrib>Giedroc, David P ; Theimer, Carla A ; Nixon, Paul L</creatorcontrib><description>Programmed −1 ribosomal frameshifting has become the subject of increasing interest over the last several years, due in part to the ubiquitous nature of this translational recoding mechanism in pathogenic animal and plant viruses. All cis-acting frameshift signals encoded in mRNAs are minimally composed of two functional elements: a heptanucleotide “slippery sequence” conforming to the general form X XXY YYZ, followed by an RNA structural element, usually an H-type RNA pseudoknot, positioned an optimal number of nucleotides (5 to 9) downstream. The slippery sequence itself promotes a low level (≈1 %) of frameshifting; however, downstream pseudoknots stimulate this process significantly, in some cases up to 30 to 50 %. Although the precise molecular mechanism of stimulation of frameshifting remains poorly understood, significant advances have been made in our knowledge of the three-dimensional structures, thermodynamics of folding, and functional determinants of stimulatory RNA pseudoknots derived from the study of several well-characterized frameshift signals. These studies are summarized here and provide new insights into the structural requirements and mechanism of programmed −1 ribosomal frameshifting.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1006/jmbi.2000.3668</identifier><identifier>PMID: 10764589</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Base Sequence ; Cations - metabolism ; Cations - pharmacology ; Frameshifting, Ribosomal - genetics ; Infectious bronchitis virus - genetics ; Luteovirus - genetics ; Mammary Tumor Virus, Mouse - genetics ; Models, Genetic ; Nucleic Acid Conformation - drug effects ; recoding ; Retroviruses, Simian - genetics ; ribosomal frameshifting ; RNA ; RNA pseudoknot ; RNA Stability - drug effects ; RNA structure ; RNA thermodynamics ; RNA, Messenger - chemistry ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; RNA, Viral - chemistry ; RNA, Viral - genetics ; RNA, Viral - metabolism</subject><ispartof>Journal of Molecular Biology, 2000-04, Vol.298 (2), p.167-185</ispartof><rights>2000 Academic Press</rights><rights>Copyright 2000 Academic Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-ced744333d0f43af258c563eb5a531a6401be4a02ec7df7c205d517f5434f2ed3</citedby><cites>FETCH-LOGICAL-c477t-ced744333d0f43af258c563eb5a531a6401be4a02ec7df7c205d517f5434f2ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jmbi.2000.3668$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>313,314,780,784,792,3550,27922,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10764589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giedroc, David P</creatorcontrib><creatorcontrib>Theimer, Carla A</creatorcontrib><creatorcontrib>Nixon, Paul L</creatorcontrib><title>Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting</title><title>Journal of Molecular Biology</title><addtitle>J Mol Biol</addtitle><description>Programmed −1 ribosomal frameshifting has become the subject of increasing interest over the last several years, due in part to the ubiquitous nature of this translational recoding mechanism in pathogenic animal and plant viruses. All cis-acting frameshift signals encoded in mRNAs are minimally composed of two functional elements: a heptanucleotide “slippery sequence” conforming to the general form X XXY YYZ, followed by an RNA structural element, usually an H-type RNA pseudoknot, positioned an optimal number of nucleotides (5 to 9) downstream. The slippery sequence itself promotes a low level (≈1 %) of frameshifting; however, downstream pseudoknots stimulate this process significantly, in some cases up to 30 to 50 %. Although the precise molecular mechanism of stimulation of frameshifting remains poorly understood, significant advances have been made in our knowledge of the three-dimensional structures, thermodynamics of folding, and functional determinants of stimulatory RNA pseudoknots derived from the study of several well-characterized frameshift signals. These studies are summarized here and provide new insights into the structural requirements and mechanism of programmed −1 ribosomal frameshifting.</description><subject>Base Sequence</subject><subject>Cations - metabolism</subject><subject>Cations - pharmacology</subject><subject>Frameshifting, Ribosomal - genetics</subject><subject>Infectious bronchitis virus - genetics</subject><subject>Luteovirus - genetics</subject><subject>Mammary Tumor Virus, Mouse - genetics</subject><subject>Models, Genetic</subject><subject>Nucleic Acid Conformation - drug effects</subject><subject>recoding</subject><subject>Retroviruses, Simian - genetics</subject><subject>ribosomal frameshifting</subject><subject>RNA</subject><subject>RNA pseudoknot</subject><subject>RNA Stability - drug effects</subject><subject>RNA structure</subject><subject>RNA thermodynamics</subject><subject>RNA, Messenger - chemistry</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Viral - chemistry</subject><subject>RNA, Viral - genetics</subject><subject>RNA, Viral - metabolism</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1v2zAQhokgRe24XTsGnDJFLj8legyCNgkQtEA-ZoIijykdSXRJyoD_fSXYQ5dMdzg87wvcg9A3StaUkPr7tm_DmhFC1ryu1RlaUqI2laq5OkdLQhirmOL1Al3kvJ0oyYX6jBaUNLWQarNE7rmk0ZYxwTXOxbShC-WAzeCwHwdbQhxw9Pjp1w3eZRhdfB9iyTgM-9jtwU3LlAr92JkShjecQhtz7E2HfTI95D_Bz_cv6JM3XYavp7lCrz9_vNzeV4-_7x5ubx4rK5qmVBZcIwTn3BEvuPFMKitrDq00klNTC0JbEIYwsI3zjWVEOkkbLwUXnoHjK3R17N2l-HeEXHQfsoWuMwPEMWvaSCY5lxO4PoI2xZwTeL1LoTfpoCnRs1c9e9WzVz17nQKXp-ax7cH9hx9FToA6AjD9tw-QdLYBhumlkMAW7WL4qPsfLpqJKw</recordid><startdate>20000428</startdate><enddate>20000428</enddate><creator>Giedroc, David P</creator><creator>Theimer, Carla A</creator><creator>Nixon, Paul L</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope></search><sort><creationdate>20000428</creationdate><title>Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting</title><author>Giedroc, David P ; Theimer, Carla A ; Nixon, Paul L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-ced744333d0f43af258c563eb5a531a6401be4a02ec7df7c205d517f5434f2ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Base Sequence</topic><topic>Cations - metabolism</topic><topic>Cations - pharmacology</topic><topic>Frameshifting, Ribosomal - genetics</topic><topic>Infectious bronchitis virus - genetics</topic><topic>Luteovirus - genetics</topic><topic>Mammary Tumor Virus, Mouse - genetics</topic><topic>Models, Genetic</topic><topic>Nucleic Acid Conformation - drug effects</topic><topic>recoding</topic><topic>Retroviruses, Simian - genetics</topic><topic>ribosomal frameshifting</topic><topic>RNA</topic><topic>RNA pseudoknot</topic><topic>RNA Stability - drug effects</topic><topic>RNA structure</topic><topic>RNA thermodynamics</topic><topic>RNA, Messenger - chemistry</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Viral - chemistry</topic><topic>RNA, Viral - genetics</topic><topic>RNA, Viral - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giedroc, David P</creatorcontrib><creatorcontrib>Theimer, Carla A</creatorcontrib><creatorcontrib>Nixon, Paul L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Journal of Molecular Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giedroc, David P</au><au>Theimer, Carla A</au><au>Nixon, Paul L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting</atitle><jtitle>Journal of Molecular Biology</jtitle><addtitle>J Mol Biol</addtitle><date>2000-04-28</date><risdate>2000</risdate><volume>298</volume><issue>2</issue><spage>167</spage><epage>185</epage><pages>167-185</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Programmed −1 ribosomal frameshifting has become the subject of increasing interest over the last several years, due in part to the ubiquitous nature of this translational recoding mechanism in pathogenic animal and plant viruses. All cis-acting frameshift signals encoded in mRNAs are minimally composed of two functional elements: a heptanucleotide “slippery sequence” conforming to the general form X XXY YYZ, followed by an RNA structural element, usually an H-type RNA pseudoknot, positioned an optimal number of nucleotides (5 to 9) downstream. The slippery sequence itself promotes a low level (≈1 %) of frameshifting; however, downstream pseudoknots stimulate this process significantly, in some cases up to 30 to 50 %. Although the precise molecular mechanism of stimulation of frameshifting remains poorly understood, significant advances have been made in our knowledge of the three-dimensional structures, thermodynamics of folding, and functional determinants of stimulatory RNA pseudoknots derived from the study of several well-characterized frameshift signals. These studies are summarized here and provide new insights into the structural requirements and mechanism of programmed −1 ribosomal frameshifting.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>10764589</pmid><doi>10.1006/jmbi.2000.3668</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of Molecular Biology, 2000-04, Vol.298 (2), p.167-185
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_17525335
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Base Sequence
Cations - metabolism
Cations - pharmacology
Frameshifting, Ribosomal - genetics
Infectious bronchitis virus - genetics
Luteovirus - genetics
Mammary Tumor Virus, Mouse - genetics
Models, Genetic
Nucleic Acid Conformation - drug effects
recoding
Retroviruses, Simian - genetics
ribosomal frameshifting
RNA
RNA pseudoknot
RNA Stability - drug effects
RNA structure
RNA thermodynamics
RNA, Messenger - chemistry
RNA, Messenger - genetics
RNA, Messenger - metabolism
RNA, Viral - chemistry
RNA, Viral - genetics
RNA, Viral - metabolism
title Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A38%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure,%20stability%20and%20function%20of%20RNA%20pseudoknots%20involved%20in%20stimulating%20ribosomal%20frameshifting&rft.jtitle=Journal%20of%20Molecular%20Biology&rft.au=Giedroc,%20David%20P&rft.date=2000-04-28&rft.volume=298&rft.issue=2&rft.spage=167&rft.epage=185&rft.pages=167-185&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1006/jmbi.2000.3668&rft_dat=%3Cproquest_cross%3E17525335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17525335&rft_id=info:pmid/10764589&rft_els_id=S0022283600936684&rfr_iscdi=true