Microstructural and experimental constraints on the rheology of partially molten gabbro beneath oceanic spreading centers
Flow laws for high-temperature creep of olivine, plagioclase, and diabase are used to place constraints on the rheology of partially molten lower oceanic crust. This analysis is motivated by the observation of olivine lattice preferred orientations and subgrain microstructures in oceanic gabbros tha...
Gespeichert in:
Veröffentlicht in: | Journal of structural geology 2002-01, Vol.24 (6), p.1101-1107 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1107 |
---|---|
container_issue | 6 |
container_start_page | 1101 |
container_title | Journal of structural geology |
container_volume | 24 |
creator | Yoshinobu, Aaron S. Hirth, Greg |
description | Flow laws for high-temperature creep of olivine, plagioclase, and diabase are used to place constraints on the rheology of partially molten lower oceanic crust. This analysis is motivated by the observation of olivine lattice preferred orientations and subgrain microstructures in oceanic gabbros that lack evidence for dislocation creep in coexisting plagioclase and pyroxene. Extrapolation of experimental flow laws indicates that at temperatures above 1100°C and stresses less than 10
MPa, olivine may be the weakest phase in rocks with gabbroic composition. By accounting for variations in the melt fraction (0–10%) and grain size of partially molten plagioclase aggregates we can constrain the rheological conditions where olivine deforms by dislocation creep while plagioclase deforms by diffusion creep. Calculated effective viscosities range from 10
15 to 10
19
Pa
s; based on observations of the geometry of the partially molten zone beneath the East Pacific Rise and the microstructural and experimental constraints we favor a value of ∼10
18
Pa
s. This value approaches estimates for the viscosity of the upper mantle beneath ridge axes, but is significantly higher than previously suggested for the partially molten lower crust. Such high viscosities are inconsistent with ridge evolution models that require large amounts of lower crustal flow to accommodate melt redistribution. However, the results are compatible with recent models that favor local magma replenishment from the mantle at closely spaced intervals along the spreading center axis in a 2D, ‘sheet-like’ fashion. |
doi_str_mv | 10.1016/S0191-8141(01)00094-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17517307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0191814101000943</els_id><sourcerecordid>17517307</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-189f534699addff3a1a959c95e0c187d04f0ead1a281d9a472111264b141d17b3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKsfQchJ9LCa6e52m5OI-A8UD-o5zCazbWSbrEkq9tubWvEqDAzMvPfg_Rg7BnEOAqYXLwIkFDOo4FTAmRBCVkW5w0Ywa8oCJgJ22ehPss8OYnwX2VdDNWLrJ6uDjymsdFoF7Dk6w-lroGCX5FI-aO_yG61LkXvH04J4WJDv_XzNfccHDMli36_50veJHJ9j2wbPW3KEacG9JnRW8zgEQmPdnOucSyEesr0O-0hHv3vM3m5vXq_vi8fnu4frq8cCyymkAmayq8tqKiUa03UlAspaalmT0LmgEVUncjDgZAZGYtVMAGAyrdrc1UDTlmN2ss0dgv9YUUxqaaOmvkdHfhUVNDU0pWiysN4KN0BioE4NGQKGtQKhNqDVD2i1oahEng1oVWbf5dZHucWnpaCituQ0GRtIJ2W8_SfhG-7Zh-k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17517307</pqid></control><display><type>article</type><title>Microstructural and experimental constraints on the rheology of partially molten gabbro beneath oceanic spreading centers</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yoshinobu, Aaron S. ; Hirth, Greg</creator><creatorcontrib>Yoshinobu, Aaron S. ; Hirth, Greg</creatorcontrib><description>Flow laws for high-temperature creep of olivine, plagioclase, and diabase are used to place constraints on the rheology of partially molten lower oceanic crust. This analysis is motivated by the observation of olivine lattice preferred orientations and subgrain microstructures in oceanic gabbros that lack evidence for dislocation creep in coexisting plagioclase and pyroxene. Extrapolation of experimental flow laws indicates that at temperatures above 1100°C and stresses less than 10
MPa, olivine may be the weakest phase in rocks with gabbroic composition. By accounting for variations in the melt fraction (0–10%) and grain size of partially molten plagioclase aggregates we can constrain the rheological conditions where olivine deforms by dislocation creep while plagioclase deforms by diffusion creep. Calculated effective viscosities range from 10
15 to 10
19
Pa
s; based on observations of the geometry of the partially molten zone beneath the East Pacific Rise and the microstructural and experimental constraints we favor a value of ∼10
18
Pa
s. This value approaches estimates for the viscosity of the upper mantle beneath ridge axes, but is significantly higher than previously suggested for the partially molten lower crust. Such high viscosities are inconsistent with ridge evolution models that require large amounts of lower crustal flow to accommodate melt redistribution. However, the results are compatible with recent models that favor local magma replenishment from the mantle at closely spaced intervals along the spreading center axis in a 2D, ‘sheet-like’ fashion.</description><identifier>ISSN: 0191-8141</identifier><identifier>EISSN: 1873-1201</identifier><identifier>DOI: 10.1016/S0191-8141(01)00094-3</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Flow laws ; Hypersolidus deformation ; Marine ; Microstructures ; Mid-ocean ridges ; Ophiolites ; Partially molten gabbro ; Rheology</subject><ispartof>Journal of structural geology, 2002-01, Vol.24 (6), p.1101-1107</ispartof><rights>2002 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-189f534699addff3a1a959c95e0c187d04f0ead1a281d9a472111264b141d17b3</citedby><cites>FETCH-LOGICAL-a361t-189f534699addff3a1a959c95e0c187d04f0ead1a281d9a472111264b141d17b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0191-8141(01)00094-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Yoshinobu, Aaron S.</creatorcontrib><creatorcontrib>Hirth, Greg</creatorcontrib><title>Microstructural and experimental constraints on the rheology of partially molten gabbro beneath oceanic spreading centers</title><title>Journal of structural geology</title><description>Flow laws for high-temperature creep of olivine, plagioclase, and diabase are used to place constraints on the rheology of partially molten lower oceanic crust. This analysis is motivated by the observation of olivine lattice preferred orientations and subgrain microstructures in oceanic gabbros that lack evidence for dislocation creep in coexisting plagioclase and pyroxene. Extrapolation of experimental flow laws indicates that at temperatures above 1100°C and stresses less than 10
MPa, olivine may be the weakest phase in rocks with gabbroic composition. By accounting for variations in the melt fraction (0–10%) and grain size of partially molten plagioclase aggregates we can constrain the rheological conditions where olivine deforms by dislocation creep while plagioclase deforms by diffusion creep. Calculated effective viscosities range from 10
15 to 10
19
Pa
s; based on observations of the geometry of the partially molten zone beneath the East Pacific Rise and the microstructural and experimental constraints we favor a value of ∼10
18
Pa
s. This value approaches estimates for the viscosity of the upper mantle beneath ridge axes, but is significantly higher than previously suggested for the partially molten lower crust. Such high viscosities are inconsistent with ridge evolution models that require large amounts of lower crustal flow to accommodate melt redistribution. However, the results are compatible with recent models that favor local magma replenishment from the mantle at closely spaced intervals along the spreading center axis in a 2D, ‘sheet-like’ fashion.</description><subject>Flow laws</subject><subject>Hypersolidus deformation</subject><subject>Marine</subject><subject>Microstructures</subject><subject>Mid-ocean ridges</subject><subject>Ophiolites</subject><subject>Partially molten gabbro</subject><subject>Rheology</subject><issn>0191-8141</issn><issn>1873-1201</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKsfQchJ9LCa6e52m5OI-A8UD-o5zCazbWSbrEkq9tubWvEqDAzMvPfg_Rg7BnEOAqYXLwIkFDOo4FTAmRBCVkW5w0Ywa8oCJgJ22ehPss8OYnwX2VdDNWLrJ6uDjymsdFoF7Dk6w-lroGCX5FI-aO_yG61LkXvH04J4WJDv_XzNfccHDMli36_50veJHJ9j2wbPW3KEacG9JnRW8zgEQmPdnOucSyEesr0O-0hHv3vM3m5vXq_vi8fnu4frq8cCyymkAmayq8tqKiUa03UlAspaalmT0LmgEVUncjDgZAZGYtVMAGAyrdrc1UDTlmN2ss0dgv9YUUxqaaOmvkdHfhUVNDU0pWiysN4KN0BioE4NGQKGtQKhNqDVD2i1oahEng1oVWbf5dZHucWnpaCituQ0GRtIJ2W8_SfhG-7Zh-k</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Yoshinobu, Aaron S.</creator><creator>Hirth, Greg</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20020101</creationdate><title>Microstructural and experimental constraints on the rheology of partially molten gabbro beneath oceanic spreading centers</title><author>Yoshinobu, Aaron S. ; Hirth, Greg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-189f534699addff3a1a959c95e0c187d04f0ead1a281d9a472111264b141d17b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Flow laws</topic><topic>Hypersolidus deformation</topic><topic>Marine</topic><topic>Microstructures</topic><topic>Mid-ocean ridges</topic><topic>Ophiolites</topic><topic>Partially molten gabbro</topic><topic>Rheology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshinobu, Aaron S.</creatorcontrib><creatorcontrib>Hirth, Greg</creatorcontrib><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of structural geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshinobu, Aaron S.</au><au>Hirth, Greg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural and experimental constraints on the rheology of partially molten gabbro beneath oceanic spreading centers</atitle><jtitle>Journal of structural geology</jtitle><date>2002-01-01</date><risdate>2002</risdate><volume>24</volume><issue>6</issue><spage>1101</spage><epage>1107</epage><pages>1101-1107</pages><issn>0191-8141</issn><eissn>1873-1201</eissn><abstract>Flow laws for high-temperature creep of olivine, plagioclase, and diabase are used to place constraints on the rheology of partially molten lower oceanic crust. This analysis is motivated by the observation of olivine lattice preferred orientations and subgrain microstructures in oceanic gabbros that lack evidence for dislocation creep in coexisting plagioclase and pyroxene. Extrapolation of experimental flow laws indicates that at temperatures above 1100°C and stresses less than 10
MPa, olivine may be the weakest phase in rocks with gabbroic composition. By accounting for variations in the melt fraction (0–10%) and grain size of partially molten plagioclase aggregates we can constrain the rheological conditions where olivine deforms by dislocation creep while plagioclase deforms by diffusion creep. Calculated effective viscosities range from 10
15 to 10
19
Pa
s; based on observations of the geometry of the partially molten zone beneath the East Pacific Rise and the microstructural and experimental constraints we favor a value of ∼10
18
Pa
s. This value approaches estimates for the viscosity of the upper mantle beneath ridge axes, but is significantly higher than previously suggested for the partially molten lower crust. Such high viscosities are inconsistent with ridge evolution models that require large amounts of lower crustal flow to accommodate melt redistribution. However, the results are compatible with recent models that favor local magma replenishment from the mantle at closely spaced intervals along the spreading center axis in a 2D, ‘sheet-like’ fashion.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0191-8141(01)00094-3</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0191-8141 |
ispartof | Journal of structural geology, 2002-01, Vol.24 (6), p.1101-1107 |
issn | 0191-8141 1873-1201 |
language | eng |
recordid | cdi_proquest_miscellaneous_17517307 |
source | Access via ScienceDirect (Elsevier) |
subjects | Flow laws Hypersolidus deformation Marine Microstructures Mid-ocean ridges Ophiolites Partially molten gabbro Rheology |
title | Microstructural and experimental constraints on the rheology of partially molten gabbro beneath oceanic spreading centers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T12%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20and%20experimental%20constraints%20on%20the%20rheology%20of%20partially%20molten%20gabbro%20beneath%20oceanic%20spreading%20centers&rft.jtitle=Journal%20of%20structural%20geology&rft.au=Yoshinobu,%20Aaron%20S.&rft.date=2002-01-01&rft.volume=24&rft.issue=6&rft.spage=1101&rft.epage=1107&rft.pages=1101-1107&rft.issn=0191-8141&rft.eissn=1873-1201&rft_id=info:doi/10.1016/S0191-8141(01)00094-3&rft_dat=%3Cproquest_cross%3E17517307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17517307&rft_id=info:pmid/&rft_els_id=S0191814101000943&rfr_iscdi=true |