Microstructural and experimental constraints on the rheology of partially molten gabbro beneath oceanic spreading centers

Flow laws for high-temperature creep of olivine, plagioclase, and diabase are used to place constraints on the rheology of partially molten lower oceanic crust. This analysis is motivated by the observation of olivine lattice preferred orientations and subgrain microstructures in oceanic gabbros tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural geology 2002-01, Vol.24 (6), p.1101-1107
Hauptverfasser: Yoshinobu, Aaron S., Hirth, Greg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1107
container_issue 6
container_start_page 1101
container_title Journal of structural geology
container_volume 24
creator Yoshinobu, Aaron S.
Hirth, Greg
description Flow laws for high-temperature creep of olivine, plagioclase, and diabase are used to place constraints on the rheology of partially molten lower oceanic crust. This analysis is motivated by the observation of olivine lattice preferred orientations and subgrain microstructures in oceanic gabbros that lack evidence for dislocation creep in coexisting plagioclase and pyroxene. Extrapolation of experimental flow laws indicates that at temperatures above 1100°C and stresses less than 10 MPa, olivine may be the weakest phase in rocks with gabbroic composition. By accounting for variations in the melt fraction (0–10%) and grain size of partially molten plagioclase aggregates we can constrain the rheological conditions where olivine deforms by dislocation creep while plagioclase deforms by diffusion creep. Calculated effective viscosities range from 10 15 to 10 19 Pa s; based on observations of the geometry of the partially molten zone beneath the East Pacific Rise and the microstructural and experimental constraints we favor a value of ∼10 18 Pa s. This value approaches estimates for the viscosity of the upper mantle beneath ridge axes, but is significantly higher than previously suggested for the partially molten lower crust. Such high viscosities are inconsistent with ridge evolution models that require large amounts of lower crustal flow to accommodate melt redistribution. However, the results are compatible with recent models that favor local magma replenishment from the mantle at closely spaced intervals along the spreading center axis in a 2D, ‘sheet-like’ fashion.
doi_str_mv 10.1016/S0191-8141(01)00094-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17517307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0191814101000943</els_id><sourcerecordid>17517307</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-189f534699addff3a1a959c95e0c187d04f0ead1a281d9a472111264b141d17b3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKsfQchJ9LCa6e52m5OI-A8UD-o5zCazbWSbrEkq9tubWvEqDAzMvPfg_Rg7BnEOAqYXLwIkFDOo4FTAmRBCVkW5w0Ywa8oCJgJ22ehPss8OYnwX2VdDNWLrJ6uDjymsdFoF7Dk6w-lroGCX5FI-aO_yG61LkXvH04J4WJDv_XzNfccHDMli36_50veJHJ9j2wbPW3KEacG9JnRW8zgEQmPdnOucSyEesr0O-0hHv3vM3m5vXq_vi8fnu4frq8cCyymkAmayq8tqKiUa03UlAspaalmT0LmgEVUncjDgZAZGYtVMAGAyrdrc1UDTlmN2ss0dgv9YUUxqaaOmvkdHfhUVNDU0pWiysN4KN0BioE4NGQKGtQKhNqDVD2i1oahEng1oVWbf5dZHucWnpaCituQ0GRtIJ2W8_SfhG-7Zh-k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17517307</pqid></control><display><type>article</type><title>Microstructural and experimental constraints on the rheology of partially molten gabbro beneath oceanic spreading centers</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yoshinobu, Aaron S. ; Hirth, Greg</creator><creatorcontrib>Yoshinobu, Aaron S. ; Hirth, Greg</creatorcontrib><description>Flow laws for high-temperature creep of olivine, plagioclase, and diabase are used to place constraints on the rheology of partially molten lower oceanic crust. This analysis is motivated by the observation of olivine lattice preferred orientations and subgrain microstructures in oceanic gabbros that lack evidence for dislocation creep in coexisting plagioclase and pyroxene. Extrapolation of experimental flow laws indicates that at temperatures above 1100°C and stresses less than 10 MPa, olivine may be the weakest phase in rocks with gabbroic composition. By accounting for variations in the melt fraction (0–10%) and grain size of partially molten plagioclase aggregates we can constrain the rheological conditions where olivine deforms by dislocation creep while plagioclase deforms by diffusion creep. Calculated effective viscosities range from 10 15 to 10 19 Pa s; based on observations of the geometry of the partially molten zone beneath the East Pacific Rise and the microstructural and experimental constraints we favor a value of ∼10 18 Pa s. This value approaches estimates for the viscosity of the upper mantle beneath ridge axes, but is significantly higher than previously suggested for the partially molten lower crust. Such high viscosities are inconsistent with ridge evolution models that require large amounts of lower crustal flow to accommodate melt redistribution. However, the results are compatible with recent models that favor local magma replenishment from the mantle at closely spaced intervals along the spreading center axis in a 2D, ‘sheet-like’ fashion.</description><identifier>ISSN: 0191-8141</identifier><identifier>EISSN: 1873-1201</identifier><identifier>DOI: 10.1016/S0191-8141(01)00094-3</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Flow laws ; Hypersolidus deformation ; Marine ; Microstructures ; Mid-ocean ridges ; Ophiolites ; Partially molten gabbro ; Rheology</subject><ispartof>Journal of structural geology, 2002-01, Vol.24 (6), p.1101-1107</ispartof><rights>2002 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-189f534699addff3a1a959c95e0c187d04f0ead1a281d9a472111264b141d17b3</citedby><cites>FETCH-LOGICAL-a361t-189f534699addff3a1a959c95e0c187d04f0ead1a281d9a472111264b141d17b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0191-8141(01)00094-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Yoshinobu, Aaron S.</creatorcontrib><creatorcontrib>Hirth, Greg</creatorcontrib><title>Microstructural and experimental constraints on the rheology of partially molten gabbro beneath oceanic spreading centers</title><title>Journal of structural geology</title><description>Flow laws for high-temperature creep of olivine, plagioclase, and diabase are used to place constraints on the rheology of partially molten lower oceanic crust. This analysis is motivated by the observation of olivine lattice preferred orientations and subgrain microstructures in oceanic gabbros that lack evidence for dislocation creep in coexisting plagioclase and pyroxene. Extrapolation of experimental flow laws indicates that at temperatures above 1100°C and stresses less than 10 MPa, olivine may be the weakest phase in rocks with gabbroic composition. By accounting for variations in the melt fraction (0–10%) and grain size of partially molten plagioclase aggregates we can constrain the rheological conditions where olivine deforms by dislocation creep while plagioclase deforms by diffusion creep. Calculated effective viscosities range from 10 15 to 10 19 Pa s; based on observations of the geometry of the partially molten zone beneath the East Pacific Rise and the microstructural and experimental constraints we favor a value of ∼10 18 Pa s. This value approaches estimates for the viscosity of the upper mantle beneath ridge axes, but is significantly higher than previously suggested for the partially molten lower crust. Such high viscosities are inconsistent with ridge evolution models that require large amounts of lower crustal flow to accommodate melt redistribution. However, the results are compatible with recent models that favor local magma replenishment from the mantle at closely spaced intervals along the spreading center axis in a 2D, ‘sheet-like’ fashion.</description><subject>Flow laws</subject><subject>Hypersolidus deformation</subject><subject>Marine</subject><subject>Microstructures</subject><subject>Mid-ocean ridges</subject><subject>Ophiolites</subject><subject>Partially molten gabbro</subject><subject>Rheology</subject><issn>0191-8141</issn><issn>1873-1201</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKsfQchJ9LCa6e52m5OI-A8UD-o5zCazbWSbrEkq9tubWvEqDAzMvPfg_Rg7BnEOAqYXLwIkFDOo4FTAmRBCVkW5w0Ywa8oCJgJ22ehPss8OYnwX2VdDNWLrJ6uDjymsdFoF7Dk6w-lroGCX5FI-aO_yG61LkXvH04J4WJDv_XzNfccHDMli36_50veJHJ9j2wbPW3KEacG9JnRW8zgEQmPdnOucSyEesr0O-0hHv3vM3m5vXq_vi8fnu4frq8cCyymkAmayq8tqKiUa03UlAspaalmT0LmgEVUncjDgZAZGYtVMAGAyrdrc1UDTlmN2ss0dgv9YUUxqaaOmvkdHfhUVNDU0pWiysN4KN0BioE4NGQKGtQKhNqDVD2i1oahEng1oVWbf5dZHucWnpaCituQ0GRtIJ2W8_SfhG-7Zh-k</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Yoshinobu, Aaron S.</creator><creator>Hirth, Greg</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20020101</creationdate><title>Microstructural and experimental constraints on the rheology of partially molten gabbro beneath oceanic spreading centers</title><author>Yoshinobu, Aaron S. ; Hirth, Greg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-189f534699addff3a1a959c95e0c187d04f0ead1a281d9a472111264b141d17b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Flow laws</topic><topic>Hypersolidus deformation</topic><topic>Marine</topic><topic>Microstructures</topic><topic>Mid-ocean ridges</topic><topic>Ophiolites</topic><topic>Partially molten gabbro</topic><topic>Rheology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshinobu, Aaron S.</creatorcontrib><creatorcontrib>Hirth, Greg</creatorcontrib><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of structural geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshinobu, Aaron S.</au><au>Hirth, Greg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural and experimental constraints on the rheology of partially molten gabbro beneath oceanic spreading centers</atitle><jtitle>Journal of structural geology</jtitle><date>2002-01-01</date><risdate>2002</risdate><volume>24</volume><issue>6</issue><spage>1101</spage><epage>1107</epage><pages>1101-1107</pages><issn>0191-8141</issn><eissn>1873-1201</eissn><abstract>Flow laws for high-temperature creep of olivine, plagioclase, and diabase are used to place constraints on the rheology of partially molten lower oceanic crust. This analysis is motivated by the observation of olivine lattice preferred orientations and subgrain microstructures in oceanic gabbros that lack evidence for dislocation creep in coexisting plagioclase and pyroxene. Extrapolation of experimental flow laws indicates that at temperatures above 1100°C and stresses less than 10 MPa, olivine may be the weakest phase in rocks with gabbroic composition. By accounting for variations in the melt fraction (0–10%) and grain size of partially molten plagioclase aggregates we can constrain the rheological conditions where olivine deforms by dislocation creep while plagioclase deforms by diffusion creep. Calculated effective viscosities range from 10 15 to 10 19 Pa s; based on observations of the geometry of the partially molten zone beneath the East Pacific Rise and the microstructural and experimental constraints we favor a value of ∼10 18 Pa s. This value approaches estimates for the viscosity of the upper mantle beneath ridge axes, but is significantly higher than previously suggested for the partially molten lower crust. Such high viscosities are inconsistent with ridge evolution models that require large amounts of lower crustal flow to accommodate melt redistribution. However, the results are compatible with recent models that favor local magma replenishment from the mantle at closely spaced intervals along the spreading center axis in a 2D, ‘sheet-like’ fashion.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0191-8141(01)00094-3</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0191-8141
ispartof Journal of structural geology, 2002-01, Vol.24 (6), p.1101-1107
issn 0191-8141
1873-1201
language eng
recordid cdi_proquest_miscellaneous_17517307
source Access via ScienceDirect (Elsevier)
subjects Flow laws
Hypersolidus deformation
Marine
Microstructures
Mid-ocean ridges
Ophiolites
Partially molten gabbro
Rheology
title Microstructural and experimental constraints on the rheology of partially molten gabbro beneath oceanic spreading centers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T12%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20and%20experimental%20constraints%20on%20the%20rheology%20of%20partially%20molten%20gabbro%20beneath%20oceanic%20spreading%20centers&rft.jtitle=Journal%20of%20structural%20geology&rft.au=Yoshinobu,%20Aaron%20S.&rft.date=2002-01-01&rft.volume=24&rft.issue=6&rft.spage=1101&rft.epage=1107&rft.pages=1101-1107&rft.issn=0191-8141&rft.eissn=1873-1201&rft_id=info:doi/10.1016/S0191-8141(01)00094-3&rft_dat=%3Cproquest_cross%3E17517307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17517307&rft_id=info:pmid/&rft_els_id=S0191814101000943&rfr_iscdi=true