High-Resolution Mapping of Thermal History in Polymer Nanocomposites: Gold Nanorods as Microscale Temperature Sensors

A technique is reported for measuring and mapping the maximum internal temperature of a structural epoxy resin with high spatial resolution via the optically detected shape transformation of embedded gold nanorods (AuNRs). Spatially resolved absorption spectra of the nanocomposites are used to deter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2015-12, Vol.7 (50), p.27624-27631
Hauptverfasser: Kennedy, W. Joshua, Slinker, Keith A, Volk, Brent L, Koerner, Hilmar, Godar, Trenton J, Ehlert, Gregory J, Baur, Jeffery W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27631
container_issue 50
container_start_page 27624
container_title ACS applied materials & interfaces
container_volume 7
creator Kennedy, W. Joshua
Slinker, Keith A
Volk, Brent L
Koerner, Hilmar
Godar, Trenton J
Ehlert, Gregory J
Baur, Jeffery W
description A technique is reported for measuring and mapping the maximum internal temperature of a structural epoxy resin with high spatial resolution via the optically detected shape transformation of embedded gold nanorods (AuNRs). Spatially resolved absorption spectra of the nanocomposites are used to determine the frequencies of surface plasmon resonances. From these frequencies the AuNR aspect ratio is calculated using a new analytical approximation for the Mie-Gans scattering theory, which takes into account coincident changes in the local dielectric. Despite changes in the chemical environment, the calculated aspect ratio of the embedded nanorods is found to decrease over time to a steady-state value that depends linearly on the temperature over the range of 100–200 °C. Thus, the optical absorption can be used to determine the maximum temperature experienced at a particular location when exposure times exceed the temperature-dependent relaxation time. The usefulness of this approach is demonstrated by mapping the temperature of an internally heated structural epoxy resin with 10 μm lateral spatial resolution.
doi_str_mv 10.1021/acsami.5b08188
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1751673133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1751673133</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-8e3ae112b44e6b056a2880c3eae0b9c6c0d67a27f516d4ffce648d0439a17fe53</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0E4ntlRB4RUoodO07KhhBQJL4EZY4uzqUYJXHwJUP_PSktbEw-Wc_76u5h7ESKiRSxvABL0LhJUohMZtkW25dTraMsTuLtv1nrPXZA9CmEUbFIdtlebMxIJ2KfDTO3-IhekXw99M63_BG6zrUL7is-_8DQQM1njnoflty1_MXXywYDf4LWW990nlyPdMnvfF3-fAZfEgfij84GTxZq5HNsOgzQDwH5G7bkAx2xnQpqwuPNe8jeb2_m17Po4fnu_vrqIQI1NX2UoQKUMi60RlOIxECcZcIqBBTF1BorSpNCnFaJNKWuKotGZ6XQagoyrTBRh-xs3dsF_zUg9XnjyGJdQ4t-oFymYzJVUqkRnazR1d4UsMq74BoIy1yKfKU6X6vON6rHwOmmeygaLP_wX7cjcL4GxmD-6YfQjqf-1_YNW4CLEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751673133</pqid></control><display><type>article</type><title>High-Resolution Mapping of Thermal History in Polymer Nanocomposites: Gold Nanorods as Microscale Temperature Sensors</title><source>ACS Publications</source><creator>Kennedy, W. Joshua ; Slinker, Keith A ; Volk, Brent L ; Koerner, Hilmar ; Godar, Trenton J ; Ehlert, Gregory J ; Baur, Jeffery W</creator><creatorcontrib>Kennedy, W. Joshua ; Slinker, Keith A ; Volk, Brent L ; Koerner, Hilmar ; Godar, Trenton J ; Ehlert, Gregory J ; Baur, Jeffery W</creatorcontrib><description>A technique is reported for measuring and mapping the maximum internal temperature of a structural epoxy resin with high spatial resolution via the optically detected shape transformation of embedded gold nanorods (AuNRs). Spatially resolved absorption spectra of the nanocomposites are used to determine the frequencies of surface plasmon resonances. From these frequencies the AuNR aspect ratio is calculated using a new analytical approximation for the Mie-Gans scattering theory, which takes into account coincident changes in the local dielectric. Despite changes in the chemical environment, the calculated aspect ratio of the embedded nanorods is found to decrease over time to a steady-state value that depends linearly on the temperature over the range of 100–200 °C. Thus, the optical absorption can be used to determine the maximum temperature experienced at a particular location when exposure times exceed the temperature-dependent relaxation time. The usefulness of this approach is demonstrated by mapping the temperature of an internally heated structural epoxy resin with 10 μm lateral spatial resolution.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.5b08188</identifier><identifier>PMID: 26618850</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2015-12, Vol.7 (50), p.27624-27631</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-8e3ae112b44e6b056a2880c3eae0b9c6c0d67a27f516d4ffce648d0439a17fe53</citedby><cites>FETCH-LOGICAL-a396t-8e3ae112b44e6b056a2880c3eae0b9c6c0d67a27f516d4ffce648d0439a17fe53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.5b08188$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.5b08188$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26618850$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kennedy, W. Joshua</creatorcontrib><creatorcontrib>Slinker, Keith A</creatorcontrib><creatorcontrib>Volk, Brent L</creatorcontrib><creatorcontrib>Koerner, Hilmar</creatorcontrib><creatorcontrib>Godar, Trenton J</creatorcontrib><creatorcontrib>Ehlert, Gregory J</creatorcontrib><creatorcontrib>Baur, Jeffery W</creatorcontrib><title>High-Resolution Mapping of Thermal History in Polymer Nanocomposites: Gold Nanorods as Microscale Temperature Sensors</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>A technique is reported for measuring and mapping the maximum internal temperature of a structural epoxy resin with high spatial resolution via the optically detected shape transformation of embedded gold nanorods (AuNRs). Spatially resolved absorption spectra of the nanocomposites are used to determine the frequencies of surface plasmon resonances. From these frequencies the AuNR aspect ratio is calculated using a new analytical approximation for the Mie-Gans scattering theory, which takes into account coincident changes in the local dielectric. Despite changes in the chemical environment, the calculated aspect ratio of the embedded nanorods is found to decrease over time to a steady-state value that depends linearly on the temperature over the range of 100–200 °C. Thus, the optical absorption can be used to determine the maximum temperature experienced at a particular location when exposure times exceed the temperature-dependent relaxation time. The usefulness of this approach is demonstrated by mapping the temperature of an internally heated structural epoxy resin with 10 μm lateral spatial resolution.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0E4ntlRB4RUoodO07KhhBQJL4EZY4uzqUYJXHwJUP_PSktbEw-Wc_76u5h7ESKiRSxvABL0LhJUohMZtkW25dTraMsTuLtv1nrPXZA9CmEUbFIdtlebMxIJ2KfDTO3-IhekXw99M63_BG6zrUL7is-_8DQQM1njnoflty1_MXXywYDf4LWW990nlyPdMnvfF3-fAZfEgfij84GTxZq5HNsOgzQDwH5G7bkAx2xnQpqwuPNe8jeb2_m17Po4fnu_vrqIQI1NX2UoQKUMi60RlOIxECcZcIqBBTF1BorSpNCnFaJNKWuKotGZ6XQagoyrTBRh-xs3dsF_zUg9XnjyGJdQ4t-oFymYzJVUqkRnazR1d4UsMq74BoIy1yKfKU6X6vON6rHwOmmeygaLP_wX7cjcL4GxmD-6YfQjqf-1_YNW4CLEQ</recordid><startdate>20151223</startdate><enddate>20151223</enddate><creator>Kennedy, W. Joshua</creator><creator>Slinker, Keith A</creator><creator>Volk, Brent L</creator><creator>Koerner, Hilmar</creator><creator>Godar, Trenton J</creator><creator>Ehlert, Gregory J</creator><creator>Baur, Jeffery W</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20151223</creationdate><title>High-Resolution Mapping of Thermal History in Polymer Nanocomposites: Gold Nanorods as Microscale Temperature Sensors</title><author>Kennedy, W. Joshua ; Slinker, Keith A ; Volk, Brent L ; Koerner, Hilmar ; Godar, Trenton J ; Ehlert, Gregory J ; Baur, Jeffery W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-8e3ae112b44e6b056a2880c3eae0b9c6c0d67a27f516d4ffce648d0439a17fe53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kennedy, W. Joshua</creatorcontrib><creatorcontrib>Slinker, Keith A</creatorcontrib><creatorcontrib>Volk, Brent L</creatorcontrib><creatorcontrib>Koerner, Hilmar</creatorcontrib><creatorcontrib>Godar, Trenton J</creatorcontrib><creatorcontrib>Ehlert, Gregory J</creatorcontrib><creatorcontrib>Baur, Jeffery W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kennedy, W. Joshua</au><au>Slinker, Keith A</au><au>Volk, Brent L</au><au>Koerner, Hilmar</au><au>Godar, Trenton J</au><au>Ehlert, Gregory J</au><au>Baur, Jeffery W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Resolution Mapping of Thermal History in Polymer Nanocomposites: Gold Nanorods as Microscale Temperature Sensors</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2015-12-23</date><risdate>2015</risdate><volume>7</volume><issue>50</issue><spage>27624</spage><epage>27631</epage><pages>27624-27631</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>A technique is reported for measuring and mapping the maximum internal temperature of a structural epoxy resin with high spatial resolution via the optically detected shape transformation of embedded gold nanorods (AuNRs). Spatially resolved absorption spectra of the nanocomposites are used to determine the frequencies of surface plasmon resonances. From these frequencies the AuNR aspect ratio is calculated using a new analytical approximation for the Mie-Gans scattering theory, which takes into account coincident changes in the local dielectric. Despite changes in the chemical environment, the calculated aspect ratio of the embedded nanorods is found to decrease over time to a steady-state value that depends linearly on the temperature over the range of 100–200 °C. Thus, the optical absorption can be used to determine the maximum temperature experienced at a particular location when exposure times exceed the temperature-dependent relaxation time. The usefulness of this approach is demonstrated by mapping the temperature of an internally heated structural epoxy resin with 10 μm lateral spatial resolution.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26618850</pmid><doi>10.1021/acsami.5b08188</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2015-12, Vol.7 (50), p.27624-27631
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1751673133
source ACS Publications
title High-Resolution Mapping of Thermal History in Polymer Nanocomposites: Gold Nanorods as Microscale Temperature Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Resolution%20Mapping%20of%20Thermal%20History%20in%20Polymer%20Nanocomposites:%20Gold%20Nanorods%20as%20Microscale%20Temperature%20Sensors&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Kennedy,%20W.%20Joshua&rft.date=2015-12-23&rft.volume=7&rft.issue=50&rft.spage=27624&rft.epage=27631&rft.pages=27624-27631&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.5b08188&rft_dat=%3Cproquest_cross%3E1751673133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1751673133&rft_id=info:pmid/26618850&rfr_iscdi=true