High-Resolution Mapping of Thermal History in Polymer Nanocomposites: Gold Nanorods as Microscale Temperature Sensors
A technique is reported for measuring and mapping the maximum internal temperature of a structural epoxy resin with high spatial resolution via the optically detected shape transformation of embedded gold nanorods (AuNRs). Spatially resolved absorption spectra of the nanocomposites are used to deter...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2015-12, Vol.7 (50), p.27624-27631 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27631 |
---|---|
container_issue | 50 |
container_start_page | 27624 |
container_title | ACS applied materials & interfaces |
container_volume | 7 |
creator | Kennedy, W. Joshua Slinker, Keith A Volk, Brent L Koerner, Hilmar Godar, Trenton J Ehlert, Gregory J Baur, Jeffery W |
description | A technique is reported for measuring and mapping the maximum internal temperature of a structural epoxy resin with high spatial resolution via the optically detected shape transformation of embedded gold nanorods (AuNRs). Spatially resolved absorption spectra of the nanocomposites are used to determine the frequencies of surface plasmon resonances. From these frequencies the AuNR aspect ratio is calculated using a new analytical approximation for the Mie-Gans scattering theory, which takes into account coincident changes in the local dielectric. Despite changes in the chemical environment, the calculated aspect ratio of the embedded nanorods is found to decrease over time to a steady-state value that depends linearly on the temperature over the range of 100–200 °C. Thus, the optical absorption can be used to determine the maximum temperature experienced at a particular location when exposure times exceed the temperature-dependent relaxation time. The usefulness of this approach is demonstrated by mapping the temperature of an internally heated structural epoxy resin with 10 μm lateral spatial resolution. |
doi_str_mv | 10.1021/acsami.5b08188 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1751673133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1751673133</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-8e3ae112b44e6b056a2880c3eae0b9c6c0d67a27f516d4ffce648d0439a17fe53</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0E4ntlRB4RUoodO07KhhBQJL4EZY4uzqUYJXHwJUP_PSktbEw-Wc_76u5h7ESKiRSxvABL0LhJUohMZtkW25dTraMsTuLtv1nrPXZA9CmEUbFIdtlebMxIJ2KfDTO3-IhekXw99M63_BG6zrUL7is-_8DQQM1njnoflty1_MXXywYDf4LWW990nlyPdMnvfF3-fAZfEgfij84GTxZq5HNsOgzQDwH5G7bkAx2xnQpqwuPNe8jeb2_m17Po4fnu_vrqIQI1NX2UoQKUMi60RlOIxECcZcIqBBTF1BorSpNCnFaJNKWuKotGZ6XQagoyrTBRh-xs3dsF_zUg9XnjyGJdQ4t-oFymYzJVUqkRnazR1d4UsMq74BoIy1yKfKU6X6vON6rHwOmmeygaLP_wX7cjcL4GxmD-6YfQjqf-1_YNW4CLEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751673133</pqid></control><display><type>article</type><title>High-Resolution Mapping of Thermal History in Polymer Nanocomposites: Gold Nanorods as Microscale Temperature Sensors</title><source>ACS Publications</source><creator>Kennedy, W. Joshua ; Slinker, Keith A ; Volk, Brent L ; Koerner, Hilmar ; Godar, Trenton J ; Ehlert, Gregory J ; Baur, Jeffery W</creator><creatorcontrib>Kennedy, W. Joshua ; Slinker, Keith A ; Volk, Brent L ; Koerner, Hilmar ; Godar, Trenton J ; Ehlert, Gregory J ; Baur, Jeffery W</creatorcontrib><description>A technique is reported for measuring and mapping the maximum internal temperature of a structural epoxy resin with high spatial resolution via the optically detected shape transformation of embedded gold nanorods (AuNRs). Spatially resolved absorption spectra of the nanocomposites are used to determine the frequencies of surface plasmon resonances. From these frequencies the AuNR aspect ratio is calculated using a new analytical approximation for the Mie-Gans scattering theory, which takes into account coincident changes in the local dielectric. Despite changes in the chemical environment, the calculated aspect ratio of the embedded nanorods is found to decrease over time to a steady-state value that depends linearly on the temperature over the range of 100–200 °C. Thus, the optical absorption can be used to determine the maximum temperature experienced at a particular location when exposure times exceed the temperature-dependent relaxation time. The usefulness of this approach is demonstrated by mapping the temperature of an internally heated structural epoxy resin with 10 μm lateral spatial resolution.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.5b08188</identifier><identifier>PMID: 26618850</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2015-12, Vol.7 (50), p.27624-27631</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-8e3ae112b44e6b056a2880c3eae0b9c6c0d67a27f516d4ffce648d0439a17fe53</citedby><cites>FETCH-LOGICAL-a396t-8e3ae112b44e6b056a2880c3eae0b9c6c0d67a27f516d4ffce648d0439a17fe53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.5b08188$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.5b08188$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26618850$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kennedy, W. Joshua</creatorcontrib><creatorcontrib>Slinker, Keith A</creatorcontrib><creatorcontrib>Volk, Brent L</creatorcontrib><creatorcontrib>Koerner, Hilmar</creatorcontrib><creatorcontrib>Godar, Trenton J</creatorcontrib><creatorcontrib>Ehlert, Gregory J</creatorcontrib><creatorcontrib>Baur, Jeffery W</creatorcontrib><title>High-Resolution Mapping of Thermal History in Polymer Nanocomposites: Gold Nanorods as Microscale Temperature Sensors</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>A technique is reported for measuring and mapping the maximum internal temperature of a structural epoxy resin with high spatial resolution via the optically detected shape transformation of embedded gold nanorods (AuNRs). Spatially resolved absorption spectra of the nanocomposites are used to determine the frequencies of surface plasmon resonances. From these frequencies the AuNR aspect ratio is calculated using a new analytical approximation for the Mie-Gans scattering theory, which takes into account coincident changes in the local dielectric. Despite changes in the chemical environment, the calculated aspect ratio of the embedded nanorods is found to decrease over time to a steady-state value that depends linearly on the temperature over the range of 100–200 °C. Thus, the optical absorption can be used to determine the maximum temperature experienced at a particular location when exposure times exceed the temperature-dependent relaxation time. The usefulness of this approach is demonstrated by mapping the temperature of an internally heated structural epoxy resin with 10 μm lateral spatial resolution.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0E4ntlRB4RUoodO07KhhBQJL4EZY4uzqUYJXHwJUP_PSktbEw-Wc_76u5h7ESKiRSxvABL0LhJUohMZtkW25dTraMsTuLtv1nrPXZA9CmEUbFIdtlebMxIJ2KfDTO3-IhekXw99M63_BG6zrUL7is-_8DQQM1njnoflty1_MXXywYDf4LWW990nlyPdMnvfF3-fAZfEgfij84GTxZq5HNsOgzQDwH5G7bkAx2xnQpqwuPNe8jeb2_m17Po4fnu_vrqIQI1NX2UoQKUMi60RlOIxECcZcIqBBTF1BorSpNCnFaJNKWuKotGZ6XQagoyrTBRh-xs3dsF_zUg9XnjyGJdQ4t-oFymYzJVUqkRnazR1d4UsMq74BoIy1yKfKU6X6vON6rHwOmmeygaLP_wX7cjcL4GxmD-6YfQjqf-1_YNW4CLEQ</recordid><startdate>20151223</startdate><enddate>20151223</enddate><creator>Kennedy, W. Joshua</creator><creator>Slinker, Keith A</creator><creator>Volk, Brent L</creator><creator>Koerner, Hilmar</creator><creator>Godar, Trenton J</creator><creator>Ehlert, Gregory J</creator><creator>Baur, Jeffery W</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20151223</creationdate><title>High-Resolution Mapping of Thermal History in Polymer Nanocomposites: Gold Nanorods as Microscale Temperature Sensors</title><author>Kennedy, W. Joshua ; Slinker, Keith A ; Volk, Brent L ; Koerner, Hilmar ; Godar, Trenton J ; Ehlert, Gregory J ; Baur, Jeffery W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-8e3ae112b44e6b056a2880c3eae0b9c6c0d67a27f516d4ffce648d0439a17fe53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kennedy, W. Joshua</creatorcontrib><creatorcontrib>Slinker, Keith A</creatorcontrib><creatorcontrib>Volk, Brent L</creatorcontrib><creatorcontrib>Koerner, Hilmar</creatorcontrib><creatorcontrib>Godar, Trenton J</creatorcontrib><creatorcontrib>Ehlert, Gregory J</creatorcontrib><creatorcontrib>Baur, Jeffery W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kennedy, W. Joshua</au><au>Slinker, Keith A</au><au>Volk, Brent L</au><au>Koerner, Hilmar</au><au>Godar, Trenton J</au><au>Ehlert, Gregory J</au><au>Baur, Jeffery W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Resolution Mapping of Thermal History in Polymer Nanocomposites: Gold Nanorods as Microscale Temperature Sensors</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2015-12-23</date><risdate>2015</risdate><volume>7</volume><issue>50</issue><spage>27624</spage><epage>27631</epage><pages>27624-27631</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>A technique is reported for measuring and mapping the maximum internal temperature of a structural epoxy resin with high spatial resolution via the optically detected shape transformation of embedded gold nanorods (AuNRs). Spatially resolved absorption spectra of the nanocomposites are used to determine the frequencies of surface plasmon resonances. From these frequencies the AuNR aspect ratio is calculated using a new analytical approximation for the Mie-Gans scattering theory, which takes into account coincident changes in the local dielectric. Despite changes in the chemical environment, the calculated aspect ratio of the embedded nanorods is found to decrease over time to a steady-state value that depends linearly on the temperature over the range of 100–200 °C. Thus, the optical absorption can be used to determine the maximum temperature experienced at a particular location when exposure times exceed the temperature-dependent relaxation time. The usefulness of this approach is demonstrated by mapping the temperature of an internally heated structural epoxy resin with 10 μm lateral spatial resolution.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26618850</pmid><doi>10.1021/acsami.5b08188</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2015-12, Vol.7 (50), p.27624-27631 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_1751673133 |
source | ACS Publications |
title | High-Resolution Mapping of Thermal History in Polymer Nanocomposites: Gold Nanorods as Microscale Temperature Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Resolution%20Mapping%20of%20Thermal%20History%20in%20Polymer%20Nanocomposites:%20Gold%20Nanorods%20as%20Microscale%20Temperature%20Sensors&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Kennedy,%20W.%20Joshua&rft.date=2015-12-23&rft.volume=7&rft.issue=50&rft.spage=27624&rft.epage=27631&rft.pages=27624-27631&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.5b08188&rft_dat=%3Cproquest_cross%3E1751673133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1751673133&rft_id=info:pmid/26618850&rfr_iscdi=true |