Kinetics of Spanish broom peroxidase obeys a Ping-Pong Bi–Bi mechanism with competitive inhibition by substrates

In plants, adverse conditions often induce an increase in reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). H2O2 is reduced to water, and thus becomes detoxified by enzymes such as Cytisus multiflorus peroxidase (CMP). Here, the steady-state kinetics of the H2O2-supported oxidation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2015-11, Vol.81, p.1005-1011
Hauptverfasser: Pérez Galende, Patricia, Hidalgo Cuadrado, Nazaret, Kostetsky, Eduard Ya, Roig, Manuel G., Villar, Enrique, Shnyrov, Valery L., Kennedy, John F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1011
container_issue
container_start_page 1005
container_title International journal of biological macromolecules
container_volume 81
creator Pérez Galende, Patricia
Hidalgo Cuadrado, Nazaret
Kostetsky, Eduard Ya
Roig, Manuel G.
Villar, Enrique
Shnyrov, Valery L.
Kennedy, John F.
description In plants, adverse conditions often induce an increase in reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). H2O2 is reduced to water, and thus becomes detoxified by enzymes such as Cytisus multiflorus peroxidase (CMP). Here, the steady-state kinetics of the H2O2-supported oxidation of different organic substrates by CMP was investigated. Analysis of the initial rates vs. H2O2 and reducing substrate concentrations proved to be consistent with a substrate-inhibited Ping-Pong Bi–Bi reaction mechanism. The phenomenological approach expresses the peroxidase Ping-Pong mechanism in the form of the Michaelis–Menten equation and affords an interpretation of the effects in terms of the kinetic parameters KmH2O2, KmAH2, kcat, KSIH2O, KSIAH2 and of the microscopic rate constants, k1 and k3, of the shared three-step catalytic cycle of peroxidases.
doi_str_mv 10.1016/j.ijbiomac.2015.09.042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1751492032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813015006571</els_id><sourcerecordid>1751492032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-4316d8ca2fe04f8bb00f193c22888ca95b03a31ff1e0feb954cdc3240b6730ba3</originalsourceid><addsrcrecordid>eNqFkM1u1DAQxy1U1C6lr1D52EvC2E6yyY22ooCoRCXgbNnOuDurTZza2dK98Q68IU-CV9ty5TSj0f9D82PsXEApQDTv1iWtLYXBuFKCqEvoSqjkK7YQ7bIrAEAdsQWIShStUHDC3qS0ztemFu0xO5FNJRqpugWLX2jEmVziwfNvkxkprbiNIQx8whieqDcJebC4S9zwOxrvi7sw3vMr-vPr9xXxAd1qbxr4T5pX3IVhynEzPSKncUU2r2HkdsfT1qY5mhnTW_bam03Cs-d5yn7cfPh-_am4_frx8_XlbeFU085FpUTTt85Ij1D51loALzrlpGzbfO5qC8oo4b1A8Gi7unK9U7IC2ywVWKNO2cUhd4rhYYtp1gMlh5uNGTFskxbLWlSdBCWztDlIXQwpRfR6ijSYuNMC9J63XusX3nrPW0OnM-9sPH_u2NoB-3-2F8BZ8P4gwPzpI2HUyRGODnuK6GbdB_pfx19MWZdd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751492032</pqid></control><display><type>article</type><title>Kinetics of Spanish broom peroxidase obeys a Ping-Pong Bi–Bi mechanism with competitive inhibition by substrates</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Pérez Galende, Patricia ; Hidalgo Cuadrado, Nazaret ; Kostetsky, Eduard Ya ; Roig, Manuel G. ; Villar, Enrique ; Shnyrov, Valery L. ; Kennedy, John F.</creator><creatorcontrib>Pérez Galende, Patricia ; Hidalgo Cuadrado, Nazaret ; Kostetsky, Eduard Ya ; Roig, Manuel G. ; Villar, Enrique ; Shnyrov, Valery L. ; Kennedy, John F.</creatorcontrib><description>In plants, adverse conditions often induce an increase in reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). H2O2 is reduced to water, and thus becomes detoxified by enzymes such as Cytisus multiflorus peroxidase (CMP). Here, the steady-state kinetics of the H2O2-supported oxidation of different organic substrates by CMP was investigated. Analysis of the initial rates vs. H2O2 and reducing substrate concentrations proved to be consistent with a substrate-inhibited Ping-Pong Bi–Bi reaction mechanism. The phenomenological approach expresses the peroxidase Ping-Pong mechanism in the form of the Michaelis–Menten equation and affords an interpretation of the effects in terms of the kinetic parameters KmH2O2, KmAH2, kcat, KSIH2O, KSIAH2 and of the microscopic rate constants, k1 and k3, of the shared three-step catalytic cycle of peroxidases.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2015.09.042</identifier><identifier>PMID: 26416239</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biocatalysis ; Cytisus - enzymology ; Guaiacol - metabolism ; Heme peroxidase ; Hydrogen Peroxide - metabolism ; Kinetics ; Microscopic constants ; Models, Molecular ; Oxidation-Reduction ; Peroxidase - antagonists &amp; inhibitors ; Peroxidase - metabolism ; Ping-Pong Bi–Bi Mechanism ; Substrate Specificity</subject><ispartof>International journal of biological macromolecules, 2015-11, Vol.81, p.1005-1011</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright © 2015 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-4316d8ca2fe04f8bb00f193c22888ca95b03a31ff1e0feb954cdc3240b6730ba3</citedby><cites>FETCH-LOGICAL-c368t-4316d8ca2fe04f8bb00f193c22888ca95b03a31ff1e0feb954cdc3240b6730ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijbiomac.2015.09.042$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26416239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pérez Galende, Patricia</creatorcontrib><creatorcontrib>Hidalgo Cuadrado, Nazaret</creatorcontrib><creatorcontrib>Kostetsky, Eduard Ya</creatorcontrib><creatorcontrib>Roig, Manuel G.</creatorcontrib><creatorcontrib>Villar, Enrique</creatorcontrib><creatorcontrib>Shnyrov, Valery L.</creatorcontrib><creatorcontrib>Kennedy, John F.</creatorcontrib><title>Kinetics of Spanish broom peroxidase obeys a Ping-Pong Bi–Bi mechanism with competitive inhibition by substrates</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>In plants, adverse conditions often induce an increase in reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). H2O2 is reduced to water, and thus becomes detoxified by enzymes such as Cytisus multiflorus peroxidase (CMP). Here, the steady-state kinetics of the H2O2-supported oxidation of different organic substrates by CMP was investigated. Analysis of the initial rates vs. H2O2 and reducing substrate concentrations proved to be consistent with a substrate-inhibited Ping-Pong Bi–Bi reaction mechanism. The phenomenological approach expresses the peroxidase Ping-Pong mechanism in the form of the Michaelis–Menten equation and affords an interpretation of the effects in terms of the kinetic parameters KmH2O2, KmAH2, kcat, KSIH2O, KSIAH2 and of the microscopic rate constants, k1 and k3, of the shared three-step catalytic cycle of peroxidases.</description><subject>Biocatalysis</subject><subject>Cytisus - enzymology</subject><subject>Guaiacol - metabolism</subject><subject>Heme peroxidase</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Kinetics</subject><subject>Microscopic constants</subject><subject>Models, Molecular</subject><subject>Oxidation-Reduction</subject><subject>Peroxidase - antagonists &amp; inhibitors</subject><subject>Peroxidase - metabolism</subject><subject>Ping-Pong Bi–Bi Mechanism</subject><subject>Substrate Specificity</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1u1DAQxy1U1C6lr1D52EvC2E6yyY22ooCoRCXgbNnOuDurTZza2dK98Q68IU-CV9ty5TSj0f9D82PsXEApQDTv1iWtLYXBuFKCqEvoSqjkK7YQ7bIrAEAdsQWIShStUHDC3qS0ztemFu0xO5FNJRqpugWLX2jEmVziwfNvkxkprbiNIQx8whieqDcJebC4S9zwOxrvi7sw3vMr-vPr9xXxAd1qbxr4T5pX3IVhynEzPSKncUU2r2HkdsfT1qY5mhnTW_bam03Cs-d5yn7cfPh-_am4_frx8_XlbeFU085FpUTTt85Ij1D51loALzrlpGzbfO5qC8oo4b1A8Gi7unK9U7IC2ywVWKNO2cUhd4rhYYtp1gMlh5uNGTFskxbLWlSdBCWztDlIXQwpRfR6ijSYuNMC9J63XusX3nrPW0OnM-9sPH_u2NoB-3-2F8BZ8P4gwPzpI2HUyRGODnuK6GbdB_pfx19MWZdd</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Pérez Galende, Patricia</creator><creator>Hidalgo Cuadrado, Nazaret</creator><creator>Kostetsky, Eduard Ya</creator><creator>Roig, Manuel G.</creator><creator>Villar, Enrique</creator><creator>Shnyrov, Valery L.</creator><creator>Kennedy, John F.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201511</creationdate><title>Kinetics of Spanish broom peroxidase obeys a Ping-Pong Bi–Bi mechanism with competitive inhibition by substrates</title><author>Pérez Galende, Patricia ; Hidalgo Cuadrado, Nazaret ; Kostetsky, Eduard Ya ; Roig, Manuel G. ; Villar, Enrique ; Shnyrov, Valery L. ; Kennedy, John F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-4316d8ca2fe04f8bb00f193c22888ca95b03a31ff1e0feb954cdc3240b6730ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biocatalysis</topic><topic>Cytisus - enzymology</topic><topic>Guaiacol - metabolism</topic><topic>Heme peroxidase</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Kinetics</topic><topic>Microscopic constants</topic><topic>Models, Molecular</topic><topic>Oxidation-Reduction</topic><topic>Peroxidase - antagonists &amp; inhibitors</topic><topic>Peroxidase - metabolism</topic><topic>Ping-Pong Bi–Bi Mechanism</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez Galende, Patricia</creatorcontrib><creatorcontrib>Hidalgo Cuadrado, Nazaret</creatorcontrib><creatorcontrib>Kostetsky, Eduard Ya</creatorcontrib><creatorcontrib>Roig, Manuel G.</creatorcontrib><creatorcontrib>Villar, Enrique</creatorcontrib><creatorcontrib>Shnyrov, Valery L.</creatorcontrib><creatorcontrib>Kennedy, John F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez Galende, Patricia</au><au>Hidalgo Cuadrado, Nazaret</au><au>Kostetsky, Eduard Ya</au><au>Roig, Manuel G.</au><au>Villar, Enrique</au><au>Shnyrov, Valery L.</au><au>Kennedy, John F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics of Spanish broom peroxidase obeys a Ping-Pong Bi–Bi mechanism with competitive inhibition by substrates</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2015-11</date><risdate>2015</risdate><volume>81</volume><spage>1005</spage><epage>1011</epage><pages>1005-1011</pages><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>In plants, adverse conditions often induce an increase in reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). H2O2 is reduced to water, and thus becomes detoxified by enzymes such as Cytisus multiflorus peroxidase (CMP). Here, the steady-state kinetics of the H2O2-supported oxidation of different organic substrates by CMP was investigated. Analysis of the initial rates vs. H2O2 and reducing substrate concentrations proved to be consistent with a substrate-inhibited Ping-Pong Bi–Bi reaction mechanism. The phenomenological approach expresses the peroxidase Ping-Pong mechanism in the form of the Michaelis–Menten equation and affords an interpretation of the effects in terms of the kinetic parameters KmH2O2, KmAH2, kcat, KSIH2O, KSIAH2 and of the microscopic rate constants, k1 and k3, of the shared three-step catalytic cycle of peroxidases.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>26416239</pmid><doi>10.1016/j.ijbiomac.2015.09.042</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 2015-11, Vol.81, p.1005-1011
issn 0141-8130
1879-0003
language eng
recordid cdi_proquest_miscellaneous_1751492032
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Biocatalysis
Cytisus - enzymology
Guaiacol - metabolism
Heme peroxidase
Hydrogen Peroxide - metabolism
Kinetics
Microscopic constants
Models, Molecular
Oxidation-Reduction
Peroxidase - antagonists & inhibitors
Peroxidase - metabolism
Ping-Pong Bi–Bi Mechanism
Substrate Specificity
title Kinetics of Spanish broom peroxidase obeys a Ping-Pong Bi–Bi mechanism with competitive inhibition by substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A00%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20of%20Spanish%20broom%20peroxidase%20obeys%20a%20Ping-Pong%20Bi%E2%80%93Bi%20mechanism%20with%20competitive%20inhibition%20by%20substrates&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=P%C3%A9rez%20Galende,%20Patricia&rft.date=2015-11&rft.volume=81&rft.spage=1005&rft.epage=1011&rft.pages=1005-1011&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2015.09.042&rft_dat=%3Cproquest_cross%3E1751492032%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1751492032&rft_id=info:pmid/26416239&rft_els_id=S0141813015006571&rfr_iscdi=true