Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions
DNA nanotubes hold great potential as drug delivery vehicles and as programmable templates for the organization of materials and biomolecules. Existing methods for their construction produce assemblies that are entirely double-stranded and rigid, and thus have limited intrinsic dynamic character, or...
Gespeichert in:
Veröffentlicht in: | ACS nano 2015-12, Vol.9 (12), p.11898-11908 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11908 |
---|---|
container_issue | 12 |
container_start_page | 11898 |
container_title | ACS nano |
container_volume | 9 |
creator | Rahbani, Janane F Hariri, Amani A Cosa, Gonzalo Sleiman, Hanadi F |
description | DNA nanotubes hold great potential as drug delivery vehicles and as programmable templates for the organization of materials and biomolecules. Existing methods for their construction produce assemblies that are entirely double-stranded and rigid, and thus have limited intrinsic dynamic character, or they rely on chemically modified and ligated DNA structures. Here, we report a simple and efficient synthesis of DNA nanotubes from 11 short unmodified strands, and the study of their dynamic behavior by atomic force microscopy and in situ single molecule fluorescence microscopy. This method allows the programmable introduction of DNA structural changes within the repeat units of the tubes. We generate and study fully double-stranded nanotubes, and convert them to nanotubes with one, two and three single-stranded sides, using strand displacement strategies. The nanotubes can be reversibly switched between these forms without compromising their stability and micron-scale lengths. We then site-specifically introduce DNA strands that shorten two sides of the nanotubes, while keeping the length of the third side. The nanotubes undergo bending with increased length mismatch between their sides, until the distortion is significant enough to shorten them, as measured by AFM and single-molecule fluorescence photobleaching experiments. The method presented here produces dynamic and robust nanotubes that can potentially behave as actuators, and allows their site-specific addressability while using a minimal number of component strands. |
doi_str_mv | 10.1021/acsnano.5b04387 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1751486960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1751486960</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-3b023c6b2e53d2c05243c70d39d280bbcb5785a878b73942fd952bf326ea22933</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0E4lE4c0M-IkGKH7WTcCtteUgIJAoSt8h2NhCU2MVOQP33GFq4cdod7Tcj7SB0SMmQEkbPlAlWWTcUmox4lm6gXZpzmZBMPm_-7YLuoL0Q3ggRaZbKbbTDpBBScLqL_HRpVVsbPL0b47sY1fUawjl-gA_wodYN4Pln3ZnX2r5gDd0ngMXzKOJB2RJPXR-ZZN75qKDEl8634fTnNKsqMB12Fb5QAfAUGuhqZ8M-2qpUE-BgPQfo6XL2OLlObu-vbibj20TxPO8SrgnjRmoGgpfMEMFG3KSk5HnJMqK10fEbobI00ynPR6wqc8F0xZkExVjO-QAdr3IX3r33ELqirYOBplEWXB8Kmgo6ymQuSUTPVqjxLgQPVbHwdav8sqCk-C66WBddrIuOjqN1eK9bKP_432YjcLICorN4c7238dd_474A16aI0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751486960</pqid></control><display><type>article</type><title>Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions</title><source>MEDLINE</source><source>ACS Publications</source><creator>Rahbani, Janane F ; Hariri, Amani A ; Cosa, Gonzalo ; Sleiman, Hanadi F</creator><creatorcontrib>Rahbani, Janane F ; Hariri, Amani A ; Cosa, Gonzalo ; Sleiman, Hanadi F</creatorcontrib><description>DNA nanotubes hold great potential as drug delivery vehicles and as programmable templates for the organization of materials and biomolecules. Existing methods for their construction produce assemblies that are entirely double-stranded and rigid, and thus have limited intrinsic dynamic character, or they rely on chemically modified and ligated DNA structures. Here, we report a simple and efficient synthesis of DNA nanotubes from 11 short unmodified strands, and the study of their dynamic behavior by atomic force microscopy and in situ single molecule fluorescence microscopy. This method allows the programmable introduction of DNA structural changes within the repeat units of the tubes. We generate and study fully double-stranded nanotubes, and convert them to nanotubes with one, two and three single-stranded sides, using strand displacement strategies. The nanotubes can be reversibly switched between these forms without compromising their stability and micron-scale lengths. We then site-specifically introduce DNA strands that shorten two sides of the nanotubes, while keeping the length of the third side. The nanotubes undergo bending with increased length mismatch between their sides, until the distortion is significant enough to shorten them, as measured by AFM and single-molecule fluorescence photobleaching experiments. The method presented here produces dynamic and robust nanotubes that can potentially behave as actuators, and allows their site-specific addressability while using a minimal number of component strands.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.5b04387</identifier><identifier>PMID: 26556531</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>DNA - chemistry ; DNA, Single-Stranded - chemistry ; Microscopy, Atomic Force ; Nanotechnology ; Nanotubes - chemistry ; Nanotubes - ultrastructure</subject><ispartof>ACS nano, 2015-12, Vol.9 (12), p.11898-11908</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-3b023c6b2e53d2c05243c70d39d280bbcb5785a878b73942fd952bf326ea22933</citedby><cites>FETCH-LOGICAL-a399t-3b023c6b2e53d2c05243c70d39d280bbcb5785a878b73942fd952bf326ea22933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.5b04387$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.5b04387$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26556531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahbani, Janane F</creatorcontrib><creatorcontrib>Hariri, Amani A</creatorcontrib><creatorcontrib>Cosa, Gonzalo</creatorcontrib><creatorcontrib>Sleiman, Hanadi F</creatorcontrib><title>Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>DNA nanotubes hold great potential as drug delivery vehicles and as programmable templates for the organization of materials and biomolecules. Existing methods for their construction produce assemblies that are entirely double-stranded and rigid, and thus have limited intrinsic dynamic character, or they rely on chemically modified and ligated DNA structures. Here, we report a simple and efficient synthesis of DNA nanotubes from 11 short unmodified strands, and the study of their dynamic behavior by atomic force microscopy and in situ single molecule fluorescence microscopy. This method allows the programmable introduction of DNA structural changes within the repeat units of the tubes. We generate and study fully double-stranded nanotubes, and convert them to nanotubes with one, two and three single-stranded sides, using strand displacement strategies. The nanotubes can be reversibly switched between these forms without compromising their stability and micron-scale lengths. We then site-specifically introduce DNA strands that shorten two sides of the nanotubes, while keeping the length of the third side. The nanotubes undergo bending with increased length mismatch between their sides, until the distortion is significant enough to shorten them, as measured by AFM and single-molecule fluorescence photobleaching experiments. The method presented here produces dynamic and robust nanotubes that can potentially behave as actuators, and allows their site-specific addressability while using a minimal number of component strands.</description><subject>DNA - chemistry</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>Microscopy, Atomic Force</subject><subject>Nanotechnology</subject><subject>Nanotubes - chemistry</subject><subject>Nanotubes - ultrastructure</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtPwzAQhC0E4lE4c0M-IkGKH7WTcCtteUgIJAoSt8h2NhCU2MVOQP33GFq4cdod7Tcj7SB0SMmQEkbPlAlWWTcUmox4lm6gXZpzmZBMPm_-7YLuoL0Q3ggRaZbKbbTDpBBScLqL_HRpVVsbPL0b47sY1fUawjl-gA_wodYN4Pln3ZnX2r5gDd0ngMXzKOJB2RJPXR-ZZN75qKDEl8634fTnNKsqMB12Fb5QAfAUGuhqZ8M-2qpUE-BgPQfo6XL2OLlObu-vbibj20TxPO8SrgnjRmoGgpfMEMFG3KSk5HnJMqK10fEbobI00ynPR6wqc8F0xZkExVjO-QAdr3IX3r33ELqirYOBplEWXB8Kmgo6ymQuSUTPVqjxLgQPVbHwdav8sqCk-C66WBddrIuOjqN1eK9bKP_432YjcLICorN4c7238dd_474A16aI0Q</recordid><startdate>20151222</startdate><enddate>20151222</enddate><creator>Rahbani, Janane F</creator><creator>Hariri, Amani A</creator><creator>Cosa, Gonzalo</creator><creator>Sleiman, Hanadi F</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20151222</creationdate><title>Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions</title><author>Rahbani, Janane F ; Hariri, Amani A ; Cosa, Gonzalo ; Sleiman, Hanadi F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-3b023c6b2e53d2c05243c70d39d280bbcb5785a878b73942fd952bf326ea22933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>DNA - chemistry</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>Microscopy, Atomic Force</topic><topic>Nanotechnology</topic><topic>Nanotubes - chemistry</topic><topic>Nanotubes - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahbani, Janane F</creatorcontrib><creatorcontrib>Hariri, Amani A</creatorcontrib><creatorcontrib>Cosa, Gonzalo</creatorcontrib><creatorcontrib>Sleiman, Hanadi F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahbani, Janane F</au><au>Hariri, Amani A</au><au>Cosa, Gonzalo</au><au>Sleiman, Hanadi F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2015-12-22</date><risdate>2015</risdate><volume>9</volume><issue>12</issue><spage>11898</spage><epage>11908</epage><pages>11898-11908</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>DNA nanotubes hold great potential as drug delivery vehicles and as programmable templates for the organization of materials and biomolecules. Existing methods for their construction produce assemblies that are entirely double-stranded and rigid, and thus have limited intrinsic dynamic character, or they rely on chemically modified and ligated DNA structures. Here, we report a simple and efficient synthesis of DNA nanotubes from 11 short unmodified strands, and the study of their dynamic behavior by atomic force microscopy and in situ single molecule fluorescence microscopy. This method allows the programmable introduction of DNA structural changes within the repeat units of the tubes. We generate and study fully double-stranded nanotubes, and convert them to nanotubes with one, two and three single-stranded sides, using strand displacement strategies. The nanotubes can be reversibly switched between these forms without compromising their stability and micron-scale lengths. We then site-specifically introduce DNA strands that shorten two sides of the nanotubes, while keeping the length of the third side. The nanotubes undergo bending with increased length mismatch between their sides, until the distortion is significant enough to shorten them, as measured by AFM and single-molecule fluorescence photobleaching experiments. The method presented here produces dynamic and robust nanotubes that can potentially behave as actuators, and allows their site-specific addressability while using a minimal number of component strands.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26556531</pmid><doi>10.1021/acsnano.5b04387</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2015-12, Vol.9 (12), p.11898-11908 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1751486960 |
source | MEDLINE; ACS Publications |
subjects | DNA - chemistry DNA, Single-Stranded - chemistry Microscopy, Atomic Force Nanotechnology Nanotubes - chemistry Nanotubes - ultrastructure |
title | Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A28%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20DNA%20Nanotubes:%20Reversible%20Switching%20between%20Single%20and%20Double-Stranded%20Forms,%20and%20Effect%20of%20Base%20Deletions&rft.jtitle=ACS%20nano&rft.au=Rahbani,%20Janane%20F&rft.date=2015-12-22&rft.volume=9&rft.issue=12&rft.spage=11898&rft.epage=11908&rft.pages=11898-11908&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.5b04387&rft_dat=%3Cproquest_cross%3E1751486960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1751486960&rft_id=info:pmid/26556531&rfr_iscdi=true |