Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions

DNA nanotubes hold great potential as drug delivery vehicles and as programmable templates for the organization of materials and biomolecules. Existing methods for their construction produce assemblies that are entirely double-stranded and rigid, and thus have limited intrinsic dynamic character, or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2015-12, Vol.9 (12), p.11898-11908
Hauptverfasser: Rahbani, Janane F, Hariri, Amani A, Cosa, Gonzalo, Sleiman, Hanadi F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11908
container_issue 12
container_start_page 11898
container_title ACS nano
container_volume 9
creator Rahbani, Janane F
Hariri, Amani A
Cosa, Gonzalo
Sleiman, Hanadi F
description DNA nanotubes hold great potential as drug delivery vehicles and as programmable templates for the organization of materials and biomolecules. Existing methods for their construction produce assemblies that are entirely double-stranded and rigid, and thus have limited intrinsic dynamic character, or they rely on chemically modified and ligated DNA structures. Here, we report a simple and efficient synthesis of DNA nanotubes from 11 short unmodified strands, and the study of their dynamic behavior by atomic force microscopy and in situ single molecule fluorescence microscopy. This method allows the programmable introduction of DNA structural changes within the repeat units of the tubes. We generate and study fully double-stranded nanotubes, and convert them to nanotubes with one, two and three single-stranded sides, using strand displacement strategies. The nanotubes can be reversibly switched between these forms without compromising their stability and micron-scale lengths. We then site-specifically introduce DNA strands that shorten two sides of the nanotubes, while keeping the length of the third side. The nanotubes undergo bending with increased length mismatch between their sides, until the distortion is significant enough to shorten them, as measured by AFM and single-molecule fluorescence photobleaching experiments. The method presented here produces dynamic and robust nanotubes that can potentially behave as actuators, and allows their site-specific addressability while using a minimal number of component strands.
doi_str_mv 10.1021/acsnano.5b04387
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1751486960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1751486960</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-3b023c6b2e53d2c05243c70d39d280bbcb5785a878b73942fd952bf326ea22933</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0E4lE4c0M-IkGKH7WTcCtteUgIJAoSt8h2NhCU2MVOQP33GFq4cdod7Tcj7SB0SMmQEkbPlAlWWTcUmox4lm6gXZpzmZBMPm_-7YLuoL0Q3ggRaZbKbbTDpBBScLqL_HRpVVsbPL0b47sY1fUawjl-gA_wodYN4Pln3ZnX2r5gDd0ngMXzKOJB2RJPXR-ZZN75qKDEl8634fTnNKsqMB12Fb5QAfAUGuhqZ8M-2qpUE-BgPQfo6XL2OLlObu-vbibj20TxPO8SrgnjRmoGgpfMEMFG3KSk5HnJMqK10fEbobI00ynPR6wqc8F0xZkExVjO-QAdr3IX3r33ELqirYOBplEWXB8Kmgo6ymQuSUTPVqjxLgQPVbHwdav8sqCk-C66WBddrIuOjqN1eK9bKP_432YjcLICorN4c7238dd_474A16aI0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751486960</pqid></control><display><type>article</type><title>Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions</title><source>MEDLINE</source><source>ACS Publications</source><creator>Rahbani, Janane F ; Hariri, Amani A ; Cosa, Gonzalo ; Sleiman, Hanadi F</creator><creatorcontrib>Rahbani, Janane F ; Hariri, Amani A ; Cosa, Gonzalo ; Sleiman, Hanadi F</creatorcontrib><description>DNA nanotubes hold great potential as drug delivery vehicles and as programmable templates for the organization of materials and biomolecules. Existing methods for their construction produce assemblies that are entirely double-stranded and rigid, and thus have limited intrinsic dynamic character, or they rely on chemically modified and ligated DNA structures. Here, we report a simple and efficient synthesis of DNA nanotubes from 11 short unmodified strands, and the study of their dynamic behavior by atomic force microscopy and in situ single molecule fluorescence microscopy. This method allows the programmable introduction of DNA structural changes within the repeat units of the tubes. We generate and study fully double-stranded nanotubes, and convert them to nanotubes with one, two and three single-stranded sides, using strand displacement strategies. The nanotubes can be reversibly switched between these forms without compromising their stability and micron-scale lengths. We then site-specifically introduce DNA strands that shorten two sides of the nanotubes, while keeping the length of the third side. The nanotubes undergo bending with increased length mismatch between their sides, until the distortion is significant enough to shorten them, as measured by AFM and single-molecule fluorescence photobleaching experiments. The method presented here produces dynamic and robust nanotubes that can potentially behave as actuators, and allows their site-specific addressability while using a minimal number of component strands.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.5b04387</identifier><identifier>PMID: 26556531</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>DNA - chemistry ; DNA, Single-Stranded - chemistry ; Microscopy, Atomic Force ; Nanotechnology ; Nanotubes - chemistry ; Nanotubes - ultrastructure</subject><ispartof>ACS nano, 2015-12, Vol.9 (12), p.11898-11908</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-3b023c6b2e53d2c05243c70d39d280bbcb5785a878b73942fd952bf326ea22933</citedby><cites>FETCH-LOGICAL-a399t-3b023c6b2e53d2c05243c70d39d280bbcb5785a878b73942fd952bf326ea22933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.5b04387$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.5b04387$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26556531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahbani, Janane F</creatorcontrib><creatorcontrib>Hariri, Amani A</creatorcontrib><creatorcontrib>Cosa, Gonzalo</creatorcontrib><creatorcontrib>Sleiman, Hanadi F</creatorcontrib><title>Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>DNA nanotubes hold great potential as drug delivery vehicles and as programmable templates for the organization of materials and biomolecules. Existing methods for their construction produce assemblies that are entirely double-stranded and rigid, and thus have limited intrinsic dynamic character, or they rely on chemically modified and ligated DNA structures. Here, we report a simple and efficient synthesis of DNA nanotubes from 11 short unmodified strands, and the study of their dynamic behavior by atomic force microscopy and in situ single molecule fluorescence microscopy. This method allows the programmable introduction of DNA structural changes within the repeat units of the tubes. We generate and study fully double-stranded nanotubes, and convert them to nanotubes with one, two and three single-stranded sides, using strand displacement strategies. The nanotubes can be reversibly switched between these forms without compromising their stability and micron-scale lengths. We then site-specifically introduce DNA strands that shorten two sides of the nanotubes, while keeping the length of the third side. The nanotubes undergo bending with increased length mismatch between their sides, until the distortion is significant enough to shorten them, as measured by AFM and single-molecule fluorescence photobleaching experiments. The method presented here produces dynamic and robust nanotubes that can potentially behave as actuators, and allows their site-specific addressability while using a minimal number of component strands.</description><subject>DNA - chemistry</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>Microscopy, Atomic Force</subject><subject>Nanotechnology</subject><subject>Nanotubes - chemistry</subject><subject>Nanotubes - ultrastructure</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtPwzAQhC0E4lE4c0M-IkGKH7WTcCtteUgIJAoSt8h2NhCU2MVOQP33GFq4cdod7Tcj7SB0SMmQEkbPlAlWWTcUmox4lm6gXZpzmZBMPm_-7YLuoL0Q3ggRaZbKbbTDpBBScLqL_HRpVVsbPL0b47sY1fUawjl-gA_wodYN4Pln3ZnX2r5gDd0ngMXzKOJB2RJPXR-ZZN75qKDEl8634fTnNKsqMB12Fb5QAfAUGuhqZ8M-2qpUE-BgPQfo6XL2OLlObu-vbibj20TxPO8SrgnjRmoGgpfMEMFG3KSk5HnJMqK10fEbobI00ynPR6wqc8F0xZkExVjO-QAdr3IX3r33ELqirYOBplEWXB8Kmgo6ymQuSUTPVqjxLgQPVbHwdav8sqCk-C66WBddrIuOjqN1eK9bKP_432YjcLICorN4c7238dd_474A16aI0Q</recordid><startdate>20151222</startdate><enddate>20151222</enddate><creator>Rahbani, Janane F</creator><creator>Hariri, Amani A</creator><creator>Cosa, Gonzalo</creator><creator>Sleiman, Hanadi F</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20151222</creationdate><title>Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions</title><author>Rahbani, Janane F ; Hariri, Amani A ; Cosa, Gonzalo ; Sleiman, Hanadi F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-3b023c6b2e53d2c05243c70d39d280bbcb5785a878b73942fd952bf326ea22933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>DNA - chemistry</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>Microscopy, Atomic Force</topic><topic>Nanotechnology</topic><topic>Nanotubes - chemistry</topic><topic>Nanotubes - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahbani, Janane F</creatorcontrib><creatorcontrib>Hariri, Amani A</creatorcontrib><creatorcontrib>Cosa, Gonzalo</creatorcontrib><creatorcontrib>Sleiman, Hanadi F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahbani, Janane F</au><au>Hariri, Amani A</au><au>Cosa, Gonzalo</au><au>Sleiman, Hanadi F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2015-12-22</date><risdate>2015</risdate><volume>9</volume><issue>12</issue><spage>11898</spage><epage>11908</epage><pages>11898-11908</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>DNA nanotubes hold great potential as drug delivery vehicles and as programmable templates for the organization of materials and biomolecules. Existing methods for their construction produce assemblies that are entirely double-stranded and rigid, and thus have limited intrinsic dynamic character, or they rely on chemically modified and ligated DNA structures. Here, we report a simple and efficient synthesis of DNA nanotubes from 11 short unmodified strands, and the study of their dynamic behavior by atomic force microscopy and in situ single molecule fluorescence microscopy. This method allows the programmable introduction of DNA structural changes within the repeat units of the tubes. We generate and study fully double-stranded nanotubes, and convert them to nanotubes with one, two and three single-stranded sides, using strand displacement strategies. The nanotubes can be reversibly switched between these forms without compromising their stability and micron-scale lengths. We then site-specifically introduce DNA strands that shorten two sides of the nanotubes, while keeping the length of the third side. The nanotubes undergo bending with increased length mismatch between their sides, until the distortion is significant enough to shorten them, as measured by AFM and single-molecule fluorescence photobleaching experiments. The method presented here produces dynamic and robust nanotubes that can potentially behave as actuators, and allows their site-specific addressability while using a minimal number of component strands.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26556531</pmid><doi>10.1021/acsnano.5b04387</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2015-12, Vol.9 (12), p.11898-11908
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1751486960
source MEDLINE; ACS Publications
subjects DNA - chemistry
DNA, Single-Stranded - chemistry
Microscopy, Atomic Force
Nanotechnology
Nanotubes - chemistry
Nanotubes - ultrastructure
title Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A28%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20DNA%20Nanotubes:%20Reversible%20Switching%20between%20Single%20and%20Double-Stranded%20Forms,%20and%20Effect%20of%20Base%20Deletions&rft.jtitle=ACS%20nano&rft.au=Rahbani,%20Janane%20F&rft.date=2015-12-22&rft.volume=9&rft.issue=12&rft.spage=11898&rft.epage=11908&rft.pages=11898-11908&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.5b04387&rft_dat=%3Cproquest_cross%3E1751486960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1751486960&rft_id=info:pmid/26556531&rfr_iscdi=true