Evolutionary Stability of Minimal Mutation Rates in an Evo-epidemiological Model

We consider the evolution of mutation rate in a seasonally forced, deterministic, compartmental epidemiological model with a transmission–virulence trade-off. We model virulence as a quantitative genetic trait in a haploid population and mutation as continuous diffusion in the trait space. There is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of mathematical biology 2015-11, Vol.77 (11), p.1985-2003
Hauptverfasser: Birch, Michael, Bolker, Benjamin M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2003
container_issue 11
container_start_page 1985
container_title Bulletin of mathematical biology
container_volume 77
creator Birch, Michael
Bolker, Benjamin M.
description We consider the evolution of mutation rate in a seasonally forced, deterministic, compartmental epidemiological model with a transmission–virulence trade-off. We model virulence as a quantitative genetic trait in a haploid population and mutation as continuous diffusion in the trait space. There is a mutation rate threshold above which the pathogen cannot invade a wholly susceptible population. The evolutionarily stable (ESS) mutation rate is the one which drives the lowest average density, over the course of one forcing period, of susceptible individuals at steady state. In contrast with earlier eco-evolutionary models in which higher mutation rates allow for better evolutionary tracking of a dynamic environment, numerical calculations suggest that in our model the minimum average susceptible population, and hence the ESS, is achieved by a pathogen strain with zero mutation. We discuss how this result arises within our model and how the model might be modified to obtain a nonzero optimum.
doi_str_mv 10.1007/s11538-015-0112-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1751229169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3874607311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-61fdd309dfdea5d5b29228e2fa2cb62cdc198cda5f2c66e2c1da231b1ac5238e3</originalsourceid><addsrcrecordid>eNqNkV1LwzAUhoMobk5_gDdS8Mabas7pkjaXMvyCieLHdUiTdGR0zWxaYf_elKmIIHgRcpHnfQ8nDyHHQM-B0vwiALCsSCmweABTvkPGwBBTwSnukjGlAtMCp3REDkJY0pgRmdgnI-SM5kUuxuTx6t3Xfed8o9pN8typ0tWu2yS-Su5d41aqTu77Tg1A8qQ6GxLXJKpJYiy1a2fsyvnaL5weQG9sfUj2KlUHe_R5T8jr9dXL7DadP9zczS7nqZ7mrEs5VMZkVJjKWMUMK1EgFhYrhbrkqI0GUWijWIWac4sajMIMSlCaYVbYbELOtr3r1r_1NnRy5YK2da0a6_sgIWeAKICLf6AZn0KWiyKip7_Qpe_bJi4yUIxTHqdHCraUbn0Ira3kuo1f1W4kUDmYkVszMpqRgxnJY-bks7kvV9Z8J75URAC3QIhPzcK2P0b_2foB6J-YcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735606523</pqid></control><display><type>article</type><title>Evolutionary Stability of Minimal Mutation Rates in an Evo-epidemiological Model</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Birch, Michael ; Bolker, Benjamin M.</creator><creatorcontrib>Birch, Michael ; Bolker, Benjamin M.</creatorcontrib><description>We consider the evolution of mutation rate in a seasonally forced, deterministic, compartmental epidemiological model with a transmission–virulence trade-off. We model virulence as a quantitative genetic trait in a haploid population and mutation as continuous diffusion in the trait space. There is a mutation rate threshold above which the pathogen cannot invade a wholly susceptible population. The evolutionarily stable (ESS) mutation rate is the one which drives the lowest average density, over the course of one forcing period, of susceptible individuals at steady state. In contrast with earlier eco-evolutionary models in which higher mutation rates allow for better evolutionary tracking of a dynamic environment, numerical calculations suggest that in our model the minimum average susceptible population, and hence the ESS, is achieved by a pathogen strain with zero mutation. We discuss how this result arises within our model and how the model might be modified to obtain a nonzero optimum.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-015-0112-6</identifier><identifier>PMID: 26507879</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Cell Biology ; Host-Parasite Interactions - genetics ; Humans ; Life Sciences ; Mathematical and Computational Biology ; Mathematical Concepts ; Mathematics ; Mathematics and Statistics ; Models, Genetic ; Molecular Epidemiology ; Mutation Rate ; Original Article ; Virulence - genetics</subject><ispartof>Bulletin of mathematical biology, 2015-11, Vol.77 (11), p.1985-2003</ispartof><rights>Society for Mathematical Biology 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-61fdd309dfdea5d5b29228e2fa2cb62cdc198cda5f2c66e2c1da231b1ac5238e3</citedby><cites>FETCH-LOGICAL-c475t-61fdd309dfdea5d5b29228e2fa2cb62cdc198cda5f2c66e2c1da231b1ac5238e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-015-0112-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-015-0112-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26507879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Birch, Michael</creatorcontrib><creatorcontrib>Bolker, Benjamin M.</creatorcontrib><title>Evolutionary Stability of Minimal Mutation Rates in an Evo-epidemiological Model</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>We consider the evolution of mutation rate in a seasonally forced, deterministic, compartmental epidemiological model with a transmission–virulence trade-off. We model virulence as a quantitative genetic trait in a haploid population and mutation as continuous diffusion in the trait space. There is a mutation rate threshold above which the pathogen cannot invade a wholly susceptible population. The evolutionarily stable (ESS) mutation rate is the one which drives the lowest average density, over the course of one forcing period, of susceptible individuals at steady state. In contrast with earlier eco-evolutionary models in which higher mutation rates allow for better evolutionary tracking of a dynamic environment, numerical calculations suggest that in our model the minimum average susceptible population, and hence the ESS, is achieved by a pathogen strain with zero mutation. We discuss how this result arises within our model and how the model might be modified to obtain a nonzero optimum.</description><subject>Animals</subject><subject>Cell Biology</subject><subject>Host-Parasite Interactions - genetics</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Concepts</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Genetic</subject><subject>Molecular Epidemiology</subject><subject>Mutation Rate</subject><subject>Original Article</subject><subject>Virulence - genetics</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV1LwzAUhoMobk5_gDdS8Mabas7pkjaXMvyCieLHdUiTdGR0zWxaYf_elKmIIHgRcpHnfQ8nDyHHQM-B0vwiALCsSCmweABTvkPGwBBTwSnukjGlAtMCp3REDkJY0pgRmdgnI-SM5kUuxuTx6t3Xfed8o9pN8typ0tWu2yS-Su5d41aqTu77Tg1A8qQ6GxLXJKpJYiy1a2fsyvnaL5weQG9sfUj2KlUHe_R5T8jr9dXL7DadP9zczS7nqZ7mrEs5VMZkVJjKWMUMK1EgFhYrhbrkqI0GUWijWIWac4sajMIMSlCaYVbYbELOtr3r1r_1NnRy5YK2da0a6_sgIWeAKICLf6AZn0KWiyKip7_Qpe_bJi4yUIxTHqdHCraUbn0Ira3kuo1f1W4kUDmYkVszMpqRgxnJY-bks7kvV9Z8J75URAC3QIhPzcK2P0b_2foB6J-YcA</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Birch, Michael</creator><creator>Bolker, Benjamin M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20151101</creationdate><title>Evolutionary Stability of Minimal Mutation Rates in an Evo-epidemiological Model</title><author>Birch, Michael ; Bolker, Benjamin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-61fdd309dfdea5d5b29228e2fa2cb62cdc198cda5f2c66e2c1da231b1ac5238e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Cell Biology</topic><topic>Host-Parasite Interactions - genetics</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Concepts</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Genetic</topic><topic>Molecular Epidemiology</topic><topic>Mutation Rate</topic><topic>Original Article</topic><topic>Virulence - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birch, Michael</creatorcontrib><creatorcontrib>Bolker, Benjamin M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birch, Michael</au><au>Bolker, Benjamin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary Stability of Minimal Mutation Rates in an Evo-epidemiological Model</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>77</volume><issue>11</issue><spage>1985</spage><epage>2003</epage><pages>1985-2003</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>We consider the evolution of mutation rate in a seasonally forced, deterministic, compartmental epidemiological model with a transmission–virulence trade-off. We model virulence as a quantitative genetic trait in a haploid population and mutation as continuous diffusion in the trait space. There is a mutation rate threshold above which the pathogen cannot invade a wholly susceptible population. The evolutionarily stable (ESS) mutation rate is the one which drives the lowest average density, over the course of one forcing period, of susceptible individuals at steady state. In contrast with earlier eco-evolutionary models in which higher mutation rates allow for better evolutionary tracking of a dynamic environment, numerical calculations suggest that in our model the minimum average susceptible population, and hence the ESS, is achieved by a pathogen strain with zero mutation. We discuss how this result arises within our model and how the model might be modified to obtain a nonzero optimum.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26507879</pmid><doi>10.1007/s11538-015-0112-6</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0092-8240
ispartof Bulletin of mathematical biology, 2015-11, Vol.77 (11), p.1985-2003
issn 0092-8240
1522-9602
language eng
recordid cdi_proquest_miscellaneous_1751229169
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animals
Cell Biology
Host-Parasite Interactions - genetics
Humans
Life Sciences
Mathematical and Computational Biology
Mathematical Concepts
Mathematics
Mathematics and Statistics
Models, Genetic
Molecular Epidemiology
Mutation Rate
Original Article
Virulence - genetics
title Evolutionary Stability of Minimal Mutation Rates in an Evo-epidemiological Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A34%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20Stability%20of%20Minimal%20Mutation%20Rates%20in%20an%20Evo-epidemiological%20Model&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Birch,%20Michael&rft.date=2015-11-01&rft.volume=77&rft.issue=11&rft.spage=1985&rft.epage=2003&rft.pages=1985-2003&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-015-0112-6&rft_dat=%3Cproquest_cross%3E3874607311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735606523&rft_id=info:pmid/26507879&rfr_iscdi=true