Evolutionary Stability of Minimal Mutation Rates in an Evo-epidemiological Model
We consider the evolution of mutation rate in a seasonally forced, deterministic, compartmental epidemiological model with a transmission–virulence trade-off. We model virulence as a quantitative genetic trait in a haploid population and mutation as continuous diffusion in the trait space. There is...
Gespeichert in:
Veröffentlicht in: | Bulletin of mathematical biology 2015-11, Vol.77 (11), p.1985-2003 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2003 |
---|---|
container_issue | 11 |
container_start_page | 1985 |
container_title | Bulletin of mathematical biology |
container_volume | 77 |
creator | Birch, Michael Bolker, Benjamin M. |
description | We consider the evolution of mutation rate in a seasonally forced, deterministic, compartmental epidemiological model with a transmission–virulence trade-off. We model virulence as a quantitative genetic trait in a haploid population and mutation as continuous diffusion in the trait space. There is a mutation rate threshold above which the pathogen cannot invade a wholly susceptible population. The evolutionarily stable (ESS) mutation rate is the one which drives the lowest
average
density, over the course of one forcing period, of susceptible individuals at steady state. In contrast with earlier eco-evolutionary models in which higher mutation rates allow for better evolutionary tracking of a dynamic environment, numerical calculations suggest that in our model the minimum average susceptible population, and hence the ESS, is achieved by a pathogen strain with zero mutation. We discuss how this result arises within our model and how the model might be modified to obtain a nonzero optimum. |
doi_str_mv | 10.1007/s11538-015-0112-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1751229169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3874607311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-61fdd309dfdea5d5b29228e2fa2cb62cdc198cda5f2c66e2c1da231b1ac5238e3</originalsourceid><addsrcrecordid>eNqNkV1LwzAUhoMobk5_gDdS8Mabas7pkjaXMvyCieLHdUiTdGR0zWxaYf_elKmIIHgRcpHnfQ8nDyHHQM-B0vwiALCsSCmweABTvkPGwBBTwSnukjGlAtMCp3REDkJY0pgRmdgnI-SM5kUuxuTx6t3Xfed8o9pN8typ0tWu2yS-Su5d41aqTu77Tg1A8qQ6GxLXJKpJYiy1a2fsyvnaL5weQG9sfUj2KlUHe_R5T8jr9dXL7DadP9zczS7nqZ7mrEs5VMZkVJjKWMUMK1EgFhYrhbrkqI0GUWijWIWac4sajMIMSlCaYVbYbELOtr3r1r_1NnRy5YK2da0a6_sgIWeAKICLf6AZn0KWiyKip7_Qpe_bJi4yUIxTHqdHCraUbn0Ira3kuo1f1W4kUDmYkVszMpqRgxnJY-bks7kvV9Z8J75URAC3QIhPzcK2P0b_2foB6J-YcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735606523</pqid></control><display><type>article</type><title>Evolutionary Stability of Minimal Mutation Rates in an Evo-epidemiological Model</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Birch, Michael ; Bolker, Benjamin M.</creator><creatorcontrib>Birch, Michael ; Bolker, Benjamin M.</creatorcontrib><description>We consider the evolution of mutation rate in a seasonally forced, deterministic, compartmental epidemiological model with a transmission–virulence trade-off. We model virulence as a quantitative genetic trait in a haploid population and mutation as continuous diffusion in the trait space. There is a mutation rate threshold above which the pathogen cannot invade a wholly susceptible population. The evolutionarily stable (ESS) mutation rate is the one which drives the lowest
average
density, over the course of one forcing period, of susceptible individuals at steady state. In contrast with earlier eco-evolutionary models in which higher mutation rates allow for better evolutionary tracking of a dynamic environment, numerical calculations suggest that in our model the minimum average susceptible population, and hence the ESS, is achieved by a pathogen strain with zero mutation. We discuss how this result arises within our model and how the model might be modified to obtain a nonzero optimum.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-015-0112-6</identifier><identifier>PMID: 26507879</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Cell Biology ; Host-Parasite Interactions - genetics ; Humans ; Life Sciences ; Mathematical and Computational Biology ; Mathematical Concepts ; Mathematics ; Mathematics and Statistics ; Models, Genetic ; Molecular Epidemiology ; Mutation Rate ; Original Article ; Virulence - genetics</subject><ispartof>Bulletin of mathematical biology, 2015-11, Vol.77 (11), p.1985-2003</ispartof><rights>Society for Mathematical Biology 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-61fdd309dfdea5d5b29228e2fa2cb62cdc198cda5f2c66e2c1da231b1ac5238e3</citedby><cites>FETCH-LOGICAL-c475t-61fdd309dfdea5d5b29228e2fa2cb62cdc198cda5f2c66e2c1da231b1ac5238e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-015-0112-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-015-0112-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26507879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Birch, Michael</creatorcontrib><creatorcontrib>Bolker, Benjamin M.</creatorcontrib><title>Evolutionary Stability of Minimal Mutation Rates in an Evo-epidemiological Model</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>We consider the evolution of mutation rate in a seasonally forced, deterministic, compartmental epidemiological model with a transmission–virulence trade-off. We model virulence as a quantitative genetic trait in a haploid population and mutation as continuous diffusion in the trait space. There is a mutation rate threshold above which the pathogen cannot invade a wholly susceptible population. The evolutionarily stable (ESS) mutation rate is the one which drives the lowest
average
density, over the course of one forcing period, of susceptible individuals at steady state. In contrast with earlier eco-evolutionary models in which higher mutation rates allow for better evolutionary tracking of a dynamic environment, numerical calculations suggest that in our model the minimum average susceptible population, and hence the ESS, is achieved by a pathogen strain with zero mutation. We discuss how this result arises within our model and how the model might be modified to obtain a nonzero optimum.</description><subject>Animals</subject><subject>Cell Biology</subject><subject>Host-Parasite Interactions - genetics</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Concepts</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Genetic</subject><subject>Molecular Epidemiology</subject><subject>Mutation Rate</subject><subject>Original Article</subject><subject>Virulence - genetics</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV1LwzAUhoMobk5_gDdS8Mabas7pkjaXMvyCieLHdUiTdGR0zWxaYf_elKmIIHgRcpHnfQ8nDyHHQM-B0vwiALCsSCmweABTvkPGwBBTwSnukjGlAtMCp3REDkJY0pgRmdgnI-SM5kUuxuTx6t3Xfed8o9pN8typ0tWu2yS-Su5d41aqTu77Tg1A8qQ6GxLXJKpJYiy1a2fsyvnaL5weQG9sfUj2KlUHe_R5T8jr9dXL7DadP9zczS7nqZ7mrEs5VMZkVJjKWMUMK1EgFhYrhbrkqI0GUWijWIWac4sajMIMSlCaYVbYbELOtr3r1r_1NnRy5YK2da0a6_sgIWeAKICLf6AZn0KWiyKip7_Qpe_bJi4yUIxTHqdHCraUbn0Ira3kuo1f1W4kUDmYkVszMpqRgxnJY-bks7kvV9Z8J75URAC3QIhPzcK2P0b_2foB6J-YcA</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Birch, Michael</creator><creator>Bolker, Benjamin M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20151101</creationdate><title>Evolutionary Stability of Minimal Mutation Rates in an Evo-epidemiological Model</title><author>Birch, Michael ; Bolker, Benjamin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-61fdd309dfdea5d5b29228e2fa2cb62cdc198cda5f2c66e2c1da231b1ac5238e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Cell Biology</topic><topic>Host-Parasite Interactions - genetics</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Concepts</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Genetic</topic><topic>Molecular Epidemiology</topic><topic>Mutation Rate</topic><topic>Original Article</topic><topic>Virulence - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birch, Michael</creatorcontrib><creatorcontrib>Bolker, Benjamin M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birch, Michael</au><au>Bolker, Benjamin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary Stability of Minimal Mutation Rates in an Evo-epidemiological Model</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>77</volume><issue>11</issue><spage>1985</spage><epage>2003</epage><pages>1985-2003</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>We consider the evolution of mutation rate in a seasonally forced, deterministic, compartmental epidemiological model with a transmission–virulence trade-off. We model virulence as a quantitative genetic trait in a haploid population and mutation as continuous diffusion in the trait space. There is a mutation rate threshold above which the pathogen cannot invade a wholly susceptible population. The evolutionarily stable (ESS) mutation rate is the one which drives the lowest
average
density, over the course of one forcing period, of susceptible individuals at steady state. In contrast with earlier eco-evolutionary models in which higher mutation rates allow for better evolutionary tracking of a dynamic environment, numerical calculations suggest that in our model the minimum average susceptible population, and hence the ESS, is achieved by a pathogen strain with zero mutation. We discuss how this result arises within our model and how the model might be modified to obtain a nonzero optimum.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26507879</pmid><doi>10.1007/s11538-015-0112-6</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8240 |
ispartof | Bulletin of mathematical biology, 2015-11, Vol.77 (11), p.1985-2003 |
issn | 0092-8240 1522-9602 |
language | eng |
recordid | cdi_proquest_miscellaneous_1751229169 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Animals Cell Biology Host-Parasite Interactions - genetics Humans Life Sciences Mathematical and Computational Biology Mathematical Concepts Mathematics Mathematics and Statistics Models, Genetic Molecular Epidemiology Mutation Rate Original Article Virulence - genetics |
title | Evolutionary Stability of Minimal Mutation Rates in an Evo-epidemiological Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A34%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20Stability%20of%20Minimal%20Mutation%20Rates%20in%20an%20Evo-epidemiological%20Model&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Birch,%20Michael&rft.date=2015-11-01&rft.volume=77&rft.issue=11&rft.spage=1985&rft.epage=2003&rft.pages=1985-2003&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-015-0112-6&rft_dat=%3Cproquest_cross%3E3874607311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735606523&rft_id=info:pmid/26507879&rfr_iscdi=true |